oncolex logo
Utskriftsdato (22.8.2017)

Nonmelanoma skin cancer

Skin cancer is divided into:

  • Malignant melanoma - originating from melanocytes in the epidermis
  • Nonmelanoma skin cancer:
    • Basal cell carcinomas – originating from the basal cell layer in the epidermis
    • Squamous cell carcinoma – originating from the basal cell layer in the epidermis
    • Kaposi sarcoma – originates from connective tissue in the dermis
    • Merkel cell carcinoma – originates from neuroendocrine cells in the dermis
    • Skin adnex tumors – originates from hair follicle cells, sweat glands, or sebum cells in the dermis
    • Intraepithelial tumors – Bowen's disease which originates from glandular cells in the skin
    • Keratocanthomas – originate in the epidermis

The skin is the body's largest organ and weighs about 2 kg in a 70 kg person. For an adult, the surface is between 1.5 and 2.2 m2. The skin consists of three layers: the epidermis, dermis, and subcutaneous layer, all of which can develop cancer. The histological subtype depends on which of the different cell layers are malignant.

Skin types

The separation of skin types is based on sensitivity to sun rays, especially UV rays. In Norway, the most common skin types are 1–4.

  • Skin type 1 – Burns easily and rarely becomes tanned. Fair hair, sensitive skin, and freckles. Often light blond or red hair.
  • Skin type  2 – Almost always burns and sometimes becomes tanned. Fair hair which is often blond, but also dark blond and black hair.
  • Skin type  3 – Sometimes red but always tans after a while.
  • Skin type  4 – Never burns. This skin type is common in Mediterranean countries.
  • Skin type 5 and 6 – Naturally black/brown skin and often dark brown eyes and black/brown hair.

Nonmelanoma skin cancer - Essential facts

Incidence

Of nonmelanoma skin cancer, basal cell carcinoma (BCC) has not been reported to the Cancer Registry of Norway since it does not spread like other cancers. It is estimated that there are about 12,000 new lesions each year. Of squamous cell carcinoma (SCC), there were 1884 cases registered in 2015 in Norway, 1044 men and 840 women. All of the other subgroups are considerably more rare. Between 5 to 20 cases occur annually.

 


Age-specific incidence of nonmelonoma skin cancer, 2009–2013.

Source: Cancer Registry of Norway

 

 


Incidence of nonmelonoma skin cancer, 1954–2013.

Source: Cancer Registry of Norway

Etiology of skin cancer (non-melanoma)

  The main cause of the increased risk for both basal cell and squamous cell carcinomas is the cumulative damage by the sun and long-term exposure to weather and wind. The incidence therefore increases with age. Sun rays on the skin can, in addition to many beneficial effects such as vitamin D synthesis, tanning, and well-being, cause DNA damage in proliferating cells. Over time, this can lead to cancer. Skin types 1 and 2 are at a higher risk compared to other skin types.

Historically, there are Egyptian records from 500 BC possibly indicating that the sun can cause skin cancer.

In 1756, an English doctor named Pott showed that there was an increased risk of scrotal skin cancer among chimney sweepers due to carbon. Later, arsenic, X-rays, and chronic irritation were connected with an increase in skin cancer.

Certain hereditary dispositions such as Gorlins syndrome and xeroderma pigmentosum are at a higher risk for developing skin cancer at young ages.

Long-term immunosuppression after, for example, an organ transplant, appears to pose a higher risk for these skin cancers and represents a great and increasing challenge.

Histology of skin cancer (non-melanoma)

The microscopic diagnosis of the most common cancer types originating in the skin, such as squamous cell and basal cell carcinomas is often simple and reproducible. Squamous cell carcinoma precursors exist, such as atypical squamous cell hyperplasia and carcinoma in situ.

 

Skin specimen with a basal cell carcinoma. Click to enlarge. Photomicrograph demonstrating a basal cell carcinoma. Click to enlarge. Photomicrograph demonstrating a squamous cell carcinoma. Click to enlarge.

It is important that operation specimens are handled in such a way that the resection margins can be evaluated reliably.  In addition to evaluate tumor type and resection margins, the pathologist should also determine whether the basal cell carcinomas belong to an aggressively growing subtype.

Cytology is a simple and rapid method to diagnose basal cell carcinomas in scraping material, especially useful when photodynamic therapy is considered.  

Photomicrograph from smear of skin scrape in a basal cell carcinoma. Click to enlarge. Photomicrograph from smear of skin scrape in a basal cell carcinoma. Click to enlarge.

Kaposis sarcoma originates from blood vessels and can in an early phase look like hemangioma (benign tumor of the vessels). In some instances multiple biopsies are therefore needed before a final diagnosis can be established. Spindle cells and intercellular space with red blood cells is seen microscopically in the established phase.

Merkel cell carcinoma (neuroendocrine carcinoma of the skin) orginate from neuroendocrince cells in the skin. Microscopically, this is a small cell tumor where immunohistochemistry is often necessary to establish the diagnosis. Fine needle aspiration can also be used to diagnose this tumor. 

Photomicrograph showing a giemsa stained smear from an aspirate of a Merkel cell carcinoma. Click to enlarge. Photomicrograph demonstrating a Merkel cell carcinoma in an H&E stained histological section. Click to enlarge.

Skin adnexal tumors originate from hair follicles, sweat glands and sebaceous glands. They include many subtypes, most of them benign, but there are also malignant ones. Microscopically, it can sometimes be difficult to separate between the benign and malignant ones.

Metastatic patterns of skin cancer (non-melanoma)

Basal cell carcinoma

Basal cell carcinoma is a local disease and almost never spreads to lymph nodes or other organs. However, if left untreated it can cause considerable local problems including tissue destruction, infiltration of neighboring organs, and loss of function.

Squamous cell carcinoma

Squamous cell carcinoma can cause local problems and spread both lymphatically and hematogenously. The most common localizations for metastases are the lungs, liver, and bone.

Lymph nodes in the head/neck region which can be involved by metastasis from squamous cell carcinoma 

Groups of lymph nodes  usually drain specific skin areas, even if there is overlapping in border areas. For spreading which occurs after treatment of the primary tumor, it is important to know where the primary tumor was.

 

 

Lymph node areas which drain from the rest of the body

If one or more lymph nodes (marked in black) are involved outside the primary drainage area of the skin section (marked in gray), it is considered a distant metastasis M1, and not primary lymph node spreading.  

 

 

Staging of skin cancer (non-melanoma)

TNM classification

The TNM system describes the extensiveness of the disease at the time of diagnosis. "T" describes the extent of the local tumor. "N" expresses whether there are metastases to lymph nodes. "M" expresses distant metastases.

TNM classification differentiates between clinical classification (TNM) and the pathology classification (pTNM).

T stage

  • TX – primary tumor cannot be assessed 
  • T0 – not considered a primary tumor 
  • Tis – carcinoma in situ
  • T1 – the tumor is 2 cm or less in the largest dimension 
  • T2 – the tumor is over 2 cm but under 5 cm in the largest dimension

 

  • T3 – the tumor is > 5 cm in the largest dimension
  • T4 – tumor is infiltrating a deep extradermal structure, for example cartilage, muscle, or bone

 

In cases with multiple simultaneous tumors, the disease is classified according to the largest tumor's T category with the number of other tumors in parentheses. 

 

 

 

N stage

  • NX – lymph node metastases cannot be assessed 
  • N0 – no regional lymph nodes 
  • N1 – regional lymph node metastases

M stage

  • MX – distant metastases cannot be assessed
  • M0 – no distant metastases 
  • M1 – distant metastasis 

Symptoms of skin cancer (non-melanoma)

  • An ulcer on the skin which bleeds easily and does not heal.
  • Red, crater-formed thickening of the skin which is itchy or uncomfortable.  
  • Growing, discolored nodes on the skin.
Classic basal cell carcinoma (Ulcus rhodens). The lesion forms a crater with pearl-like borders. Click to enlarge image. Nodular basal cell carcinoma. Well-defined tumor without ulceration. Click to enlarge image. Diffuse sclerosing basal cell carcinoma with characteristic features. Click to enlarge image.

 

Superficial basal cell carcinoma. Click to enlarge image. Squamous cell carcinoma.
Click to enlarge image.

Differential diagnoses of skin cancer (non-melanoma)

  • Hyperkeratoses
  • Lichenoid skin diseases
  • Psoriatic skin diseases  

Patient with actinic keratosis on the nose. Click to enlarge image. Patient with Bowen's disease on the leg. Click to enlarge image. Patient with psoriasis. Click to enlarge image.

Prognosis of skin cancer (non-melanoma)

Basal cell carcinoma

With modern treatment, basal cell carcinoma has a successful cure rate of over 90%, even if multiple treatment modalities must be applied. The problem, however is that new lesions in the skin have a tendency to develop over time requiring repeated treatments. This applies especially to hereditary forms and immunosuppressed patients.  

Squamous cell carcinoma

For squamous cell carcinoma, the prognosis is also good for localized disease, but the risk for lymphatic and hematogenous spreading is higher. With hematogenic spreading, the disease is in principle incurable.   

 

 

Five-year relative survival for patients with nonmelonoma skin cancer, in percent, during the diagnosis period 1974–2013.

Source: Cancer Registry of Norway

 

References on skin cancer (non-melanoma)

  1. Cancer in Norway 2013, Cancer Registry of Norway, Institute of Population-based Research. Oslo, Norway
  2. TNM Atlas. Illustrated Guide to the TNM/pTNM Classification of Malignant Tumours. 5th Edition 2004.
  3. Moan J, Berg K, Steen HB, Warloe T, Madslien K. Fluoresence and photodynamic effekts of phtalocyanins and porphyrins in cells. I Henderson BW and Dougherty TJ (eds), Photodynamic therapy: basic principle and clinical application, 19–36. Marcel Dekker, Inc., New York (1992).
  4. Solar AM, Warloe T, Tausjø J, Berner Aa. Photodynamic therapy by topical aminolevulinic acid, dimethylsulfoxide and curettage in nodular basal cell carcinoma: a one-year study. Acta Dermato Venereol 1999; 204–206.
  5. Solar AM, Tausjø J, Warloe T. Photodynamic therapy of residual or recurrent basal cell carcinoma after radiotherapy using topical 5-aminolevulinic acid or methylester aminolevulinic acid. Acta Oncol 2000; 39(5): 605–609.
  6. Solar AM, Warloe T, Berner Aa, Giercksky K-E. Redurrence and late cosmetic results in complete responding basal cell carcinoma treated with methyl 5-aminolevulinate based photodynamic therapy: a long term follow-up study. Br J of Dermatol 2001; 145: 467–471.
  7. Cowey LC: Targeted therapy for advanced basal-cell carcinoma: Vismodegib and beyond, Dermatol Ther (Heidelb), 2013
  8. Sekulin A et al: Efficacy and safety of vismodegib in advanced basal-cell carcinoma, NEJM 2012.
  9. Tang JY et al: Inhibitinh the hedgehog pathway in patients with the basal-cell nevus syndrom, NEJM 2012

Diagnosis of skin cancer (non-melanoma)

The diagnosis is made by a clinical examination and microscopic verification. For suspicion of metastasis, CT  and MRI are used along with other image diagnostic methods such as PET and skeletal scintigraphy.

Clinical Examination

The examination should be carried out with adequate illumination while the lesion is:

  • inspected
  • palpated
  • stretched
  • measured
  • drawn on a body diagram
  • photographed

A clinical examination of regional lymph nodes is performed.

Biopsies

  • Punch biopsy
  • Surface biopsy, possibly fine-needle aspiration cytology
  • Excisional biopsy

Metastasis work-up is performed for: 

  • Suspicion of metastases
  • Special microscopic types, for example Merkel cell carcinoma

PROSEDYRER

Positron Emission Tomography (PET)

General

Positron Emission Tomography (PET) is a nuclear medical examination method. PET is a well-documented, well-established and very useful tool in oncological imaging.

Indications

Oncological imaging for:

  • Staging the primary diagnosis and recurrence
  • Evaluating the effect of aggressive chemotherapy treatment
  • Evaluating the effect of completed treatment, including differentiating scar tissue from viable residue tissue
  • Suspicion of recurrence (for example, increased level of tumor marker in the blood)

Goal

  • To provide concrete diagnostic information that will provide a basis for the choice of the best possible treatment.

Definitions

PET has a very high sensitivity and can register absorption of radiopharmaceutical agents in extremely low concentrations. Since the central atoms in biochemical compounds (carbon, oxygen, nitrogen) all have positron-emitting isotopes that can be produced in small hospital cyclotrons, it is possible to mark a number of central molecules such as oxygen, water, amino acids, various metabolites, hormones, and neurotransmitters.

For clinical PET, dextrose is usually used where a hydroxide group is replaced by 18F (18-flourine), a compound that is called 18F-FDG (flourine-18 labeled deoxyglucose). 18F-FDG has a high affinity for cells with increased metabolism, for example cancer cells. The substance is transported into the cells and phosphorylates glucose to 18F-FDG-phosphate, but no further break-down occurs. Because cell membranes are impermeable to phosphorylated deoxyglucose, an intracellular accumulation of the substance occurs.

Limitations

  • Small tumors ( < 0,5 cm) and tumors with low to moderate absorption can escape detection.
  • Inflammatory conditions will produce increased absorption.
  • For patients with diabetes (especially those requiring insulin) and non-fasting patients, high muscular absorption will reduce the sensitivity for tumor detection.
  • Some tumor types have low FDG absorption (for example, prostate and bronchoalveolar carcinoma).

Sources of error

  • Infections and inflammatory conditions (including post-operative changes) will result in increased absorption.
  • Normally, the intestine can have a high absorption.
  • Myocardium often displays high absorption, also in fasting patients.
  • 18 F-FDG is excreted through the kidneys and FDG in the urinary tract can be misinterpreted.
  •  Absorption in brown fat tissue can be misinterpreted as a tumor if PET is not compared with CT. PET/CT combined in the same apparatus gives better specificity than PET alone.

Equipment

  • PET/CT-scanner  
  • Radio-pharmaceutical agent: 18F-FDG is formed by radiating a heavier natural variant of oxygen with protons. This occurs in a cyclotron. Fluorine-18 (18F) is produced at the hospital cyclotron located at Rikshospitalet .

Preparation

Patient preparation depends on the clinical diagnosis.

  • Fast for at least 6 hours before the examination in order to increase the absorption of 18F-FDG. But the patient should drink plenty (2-4 glasses per hour. Water, tea, or coffee without sugar or cream/milk added can be substituted for water.
  • Measurement of s-glucose is performed before injection of 18F-FDG.
  • After intravenous injection of 18F-FDG, it is very important that the patient lies relaxed in a quiet room without talking and avoiding all forms of stimuli, in order to avoid non-specific absorption of 18F-FDG in the muscles.
  • Tranquilizers and painkillers are often administered prior to the injection.
  • The patient should be warm and comfortable prior to the injection in order to prevent absorption in the brown fat, which may affect the interpretation.

There will be other precautions for neurological and cardiological diagnoses.

Implementation

  • The patient must lie completely still while the images are being taken.
  • A whole-body examination takes approximately 25 minutes.
  • For PET, tissue absorption is displayed by positron-emitting, radiopharmaceutical preparations.

Registration of emission

  • The positron is considered a positively charged electron.
  • When the positron leaves the radioactive core, it will travel up to a few millimeters before it collides and fuses with an electron and is transformed into energy; this is called annihilation.
  • The mass of the positron and the electron is transformed into energy in the form of two photons, each of 511 keV, which are emitted in diametrically opposing directions (180°).
  • A ring detector around the patient will catch the photons.
  • The two photons will encounter the ring detector at the same time (coincident detection), and because they have moved in exactly opposite directions, the detection will precisely localize the radiation focus (for example, a lymph node with tumor tissue).
  • A modern PET-camera with ring detector can map the entire body in 20 minutes.
  • The PET-scanners have integrated CT, so that the information from PET is accurately localized anatomically.

Examples of findings

  • Anal cancer: Anal tumor and metastasis in lymph node
  • Hodgkin's lymphoma (HL): HL with involvement of: soft tissue in the larynx , vertebra L4 ,  os pubis L  and femur
  • Cancer of the rectum: Adenocarsinom in rektosigmoideum liver metastases
  • Intracranial tumors: Astrocytoma grade II/III, left parietal lobe  high-grade glioblastoma, right frontal lobe 
  • Lung cancer: Lung tumor  lung cancer with lymph node spread
  • Sarcoma: Soft tissue sarcoma in the left thorax
  • Cancer in the esophagus: Tumor in the distal esophagus
  • Colon cancer: Metastasis-suspect lesion in adrenal gland

Follow-Up

  • At the end of the examination, the radioactivity is small, but the patient should keep a distance (about 3 meters) from children and pregnant ladies the day of the scan.
  • The result will normally be available the following day.
Postitron emission (PET) with <sup>18</sup>F-FDGPostitron emission (PET) with <sup>18</sup>F-FDGPostitron emission (PET) with <sup>18</sup>F-FDGPostitron emission (PET) with <sup>18</sup>F-FDG
Postitron emission (PET) with <sup>18</sup>F-FDGPositron emissions tomografi (PET) with <sup>18</sup>F-FDGPositron emission tomography (PET) with <sup>18</sup>F-FDGPositron emission tomography (PET) <sup>18</sup>F-FDG
Positron emission tomography (PET) with <sup>18</sup>F-FDGPositron emission tomography (PET) <sup>18</sup>F-FDGPositron emission tomography (PET) with <sup>18</sup>F-FDGPostitron emission (PET) with <sup>18</sup>F-FDG
Postitron emission (PET) with <sup>18</sup>F-FDGPostitron emission (PET) with <sup>18</sup>F-FDGPostitron emission (PET) with <sup>18</sup>F-FDGPostitron emission (PET) with <sup>18</sup>F-FDG
Positron emmissions tomography (PET) with<sup>18</sup>F-FDGPositron emission tomography (PET) with <sup>18</sup>F-FDGPositron emission tomografi (PET) with <sup>18</sup>F-FDG

Treatment of skin cancer (non-melanoma)

The primary treatment for skin cancer consists of surgery, radiation therapy, and photodynamic therapy (PDT). The choice of modality depends on the localization, size, and additional illnesses. Freezing/heat therapy is used as indicated by a dermatologist. Chemotherapy is used for palliative purposes.

Photodynamic therapy (PDT) is a treatment form used for actinic keratoses, basal cell carcinoma, and a few other malignant skin diseases. Traditionally, these types of skin cancer have been treated with surgery, radiation therapy, or freezing with liquid nitrogen. This type of treatment is usually more time-consuming and/or costly, and it may also be more cosmetically disfiguring. Surgery is still the most common type of treatment for skin cancer.

The treatment applied may vary between lesion types and localizations. For difficult conditions, it is necessary to plan for multimodal treatment to obtain the best possible result.

Surgery of skin cancer (non-melanoma)

For non-melanoma skin cancer, surgery is one of multiple treatment modalities and often the most important. The goal of surgery is to prevent local relapse and further spreading of the disease. The surgical margins may vary depending on cancer type and whether the operation is primary or for a recurrence.

For basal cell carcinoma, nodular and other well-defined lesions, 5 mm margins are sufficient. For multifocal and morphea types of basal cell carcinoma, and relapse after previous treatment, the margins are often increased to 10 mm.

Squamous cell carcinoma has a different growth pattern requiring wider margins. Depending on the localization and type, 10-20 mm margins are recommended.

Merkel cell carcinoma has a great tendency for local relapse and lymph node spreading, due to the tumor's propensity for spreading in the dermal lymphatic pathways. Previous reports have shown an increase in local relapse tendency of up to 70%. Because of this, surgical margins of 20-30 mm are recommended, if possible. Merkel cell carcinoma is sensitive to radiation, and postoperative radiation therapy should be considered to prevent local relapse.  

For Kaposi sarcoma, the use of surgery is only used for limited disease or to reduce the tumor size before radiation therapy.

For skin adnex tumors, a rare type of skin cancer, surgery with adequate margins is the recommended treatment in most cases.

Small excisions and excisions on the trunk can usually be closed with direct suture. For larger excisions where direct closure is difficult or impossible, the surgery is performed by a plastic surgeon. The same applies to tumors in the head/neck area. In these cases, it may be necessary to use skin flap or skin grafting for adequate coverage of the surgical defect.

Metastasis

For metastasis to regional lymph nodes, the surgical treatment is lymph node resection.

For general metastatic disease, surgery is used in some situations for palliative purposes.

PROSEDYRER

Lymph node resection for nonmelanoma skin cancer

General

In rare cases, basal cell carcinoma will metastasize to regional lymph nodes. Both squamous cell carcinoma and Merkel cell carcinoma have a greater tendency for this type of spreading. Treatment of regional node metastases is surgery after the diagnosis is made. A node dissection is performed as in melanoma, but may be more technically demanding because of the difference in tumor growth.  

Infiltrated lymph nodes are stiff or hard in consistency and have a round or mildly bumpy surface.

For extranodal tumor growth, considerable tumor involvement, or tumor spillage during surgery, radiation therapy should be assessed to prevent local recurrence. 

A node dissection is performed in the groin , axilla , and neck.

Indication

  • Nonmelanoma skin cancer with spreading to regional lymph nodes.

Goal

  • Cure the disease.

Equipment

  • Microsurgery tray

Preparation

  • The surgery is performed under general anesthesia. 
  • The patient lies in the supine position.

Implementation

Inguinal Node Dissection

The surface nodes are localized at least 5 cm above the inguinal ligament in the entire femoral triangle and spread on both sides of the great saphenous vein. Except for extremely thin people, the lymph nodes are located deep into the scarpal fascia.

  • A vertical lazy-S incision is made starting 10 cm above the inguinal ligament, crosses the midpoint, and continues to approximately 15 cm below the inguinal ligament . Alternatively, an incision is made a few centimeters below and parallel with the inguinal ligament and curves medially down the the femoral triangle.
  • The skin flaps are dissected and the specimen is removed en bloc. The great saphenous vein is included in the specimen from the tip of the femoral triangle and to the opening of the femoral vein. For metastastic lymph nodes in the pelvis, the surgery is extended as an ilio-inguinal gland dissection which includes the iliac and obturator glands.
  • The incision is rinsed and a drain is installed.
  • The incision is closed in two layers.

Follow-up

The drain is kept for 5-10 days or until the fluid volume is reduced to 40-50 ml per 24 hours.

Complications

  • Postoperative seromas – these are drained sterilely
  • Nerve pain and dysfunction – often temporary 
  • Necrosis of skin edges, lymphedema, and infection in the incision – more frequent for inguinal node dissection
  • Deep vein thrombosis in the leg

Lymphedema is a serious and long-lasting complication occurring in about 20% of patients after an inguinal node dissection. Therefore, it is recommended that the patient keeps their feet elevated while sitting or lying for the first three months after the operation. Elastic stockings shoud be worn day and night during this period. Within the next three months, the patient should gradually decrease use of the stockings. 

Physiotherapy

Physiotherapy after the operation may be important for the patient to achieve an optimal rehabilitation process. Many patients can take care of the physiotherapy themselves after receiving information and guidance.

Gland dissection for nonmelanoma skin cancerGland dissection for nonmelanoma skin cancer.

Flap reconstruction

General

For some operations, it is necessary to perform skin flap reconstruction after a surgical resection to achieve coverage of the excised area, a better cosmetic result, and/or to restore functionality.

For the free flap technique, the skin tissue is transferred from one part of the body to another. The tissue's blood supply is divided and reestablished in the reconstructed area, using microsurgical techniques.

For the rotation flap technique, skin tissue, often with attached muscle, is dissected free while preserving the main blood supply. The flap may then be rotated from its original position to cover the defect. In these cases, the flap/tissue can only be used at a limited distance from the donor site.  

Indication

  • Closure of wounds after wide resection of skin. 

Goal

  • Cover difficult defects
  • Restore functionality
  • Obtain the best possible cosmetic result

Equipment

  • Plastic surgery instruments
  • Operation microscope (only for free flaps)

Preparation

  • The operation is carried out under general anesthesia.
  • Local anesthesia with adrenalin is applied to reduce bleeding.

Implementation

Free flap

A free flap reconstruction can be technically difficult and the operation time can vary from 6 to 12 hours.

  • The flap is dissected from the surrounding tissue, with at least one artery and vein intact.
  • One artery and vein in the recipient location is marked.
  • The vein and artery of the flap are ligated and the vessels divided.
  • The blood vessels of the flap and recipient location are anastomosed using microsurgery.
  • The flap is sutured to the area to be covered.
  • The donor area can usually be directly sutured.

Rotation flap

  • The flap is isolated with intact blood supply.
  • The flap is rotated directly, or through a tunnel under the skin, to the recipient location.
  • The flap is sutured to the desired location.

Follow-up

In the first days following the procedure, blood circulation in the flap should be observed closely. This is especially important for free flaps.

Wound cleaning/bandage changes should be carried out as needed.

Complications

  • Loss of parts of or the entire flap if the blood circulation clots. For free flaps, this may require an emergency reoperation.
  • Bleeding
  • Infection

Wide excision of skin lesions and skin grafting

General

For wide excisions, additional tissue around the scar where a tumor has previously been removed, is excised. Wide surgical margins around the removed tumor may reduce the risk of relapse. In cases where a lot of skin has to be removed and it is difficult to close the wound primarily, it may be necessary to use a skin graft or flap reconstruction to cover the defect.

If the area to be covered is large, the risk for relapse is considered to be high or the patient's condition does not allow an operation with comprehensive flap reconstruction, and the condition of the patient permits it, the defect will usually be covered with a skin graft.

For a skin graft, the skin tissue is moved from one part of the body to another without preserving the tissue's blood supply. New blood vessels grow from the recipient area in a few days after the operation.

Skin grafts may be full-thickness or split-thickness: 

  • A full-thickness skin graft is used for small defects where the cosmetic and functional requirements are higher. This especially applies after excision of skin changes and skin tumors in the head/neck region. Full-thickness grafts consist of both the dermis and the epidermis.
  • Split-thickness graft is often used for larger defects, and in cases where cosmetic considerations are not possible or needed. Split-thickness grafts consist of the epidermis and parts of the dermis.

Indications

Wide excision is carried out for:

  •  Tumors in the skin where a wider margin is needed to reduce the risk of relapse 
  •  Cases in which all tumor tissue was not removed during the first operation 

Goal

  • Cure the disease
  • Reduce the risk for recurrence

Equipment

  • Plastic surgery instruments

For skin grafts, the following are also used:

  • Dermatome
  • Skin knife
  • Mesher

Preparation

  • The procedure is carried out under local or general anesthesia.

Implementation

  • The area to be removed is outlined on the skin followed by administration of local anesthesia with adrenalin along the edge of the lesion, to reduce bleeding. An interval of 10 minutes should be allowed before the incision is started. 
  • An incision is made along the outline.
  • The area is dissected until an adequate margin of depth is reached.
  • The tissue is lifted at one end with forceps and using a scalpel, the appropriate skin thickness is separated from the underlying tissue.

Hemostasis is maintained with diathermy. It is necessary to maintain sufficient hemostasis to prevent postoperative bleeding and formation of an underlying hematoma. Too much diathermy can lead to loss of tissue viability, which will compromise healing of the wound.

  • The specimen is usually marked with a thread, at one end or at an area of interest, to facilitate the pathology evaluation of the specimen.

Skin graft

Full-thickness graft

For small defects, the area behind the ear is often used as donor site. For larger defects, it is common to use skin from the groin, inside of the upper arm, or other places where the donor defect can be closed directly with sutures.

  • The graft is dissected by separating the dermis from underlying fat tissue. It is important that the skin is free of fat before it is positioned onto the defect. 
  • The donor site is closed with sutures. 
  • The edge of the transplant is adapted as precisely as possible to the edges of the defect. The full-thickness graft heals by growth of blood vessels from the dermis into the edges of the defect. 
  • The graft is attached with "interrupted sutures" where 6 cm remain on each end of the sutures.
  • A loop suture is placed around the edge of the graft.
  • A compression bandage (buttoning) is placed on the graft and tied securely using ends from the interrupted sutures.

Split-thickness graft

It is easiest to obtain donor skin from flat skin surfaces. A common donor site is the thigh.

  • The skin is rubbed with oil.
  • The skin is stretched. A compressed air dermatome or manual skin knife is used to harvest the skin. The instrument functions like a cheese slicer cutting the skin in very thin layers.
  • The transplant is moistened and placed on a glass surface.
  • It is then put through a mesher (aperture puncher). Depending on the size of the mesh surface, the harvested transplant will increase in size, to cover a larger wound surface.
  • The transplant is positioned onto the defect and stapled/sutured in place.
  • Excess donor skin is resected. 

 Dressing of split-thickness graft:

  • The transplanted area may be covered my Mepitel or Jelonet.
  • On top of this is put a compression bandage/sterile sponge or similar to maintain immobility of the graft.
  • Alternatively a VAC pump may be applied (Vacuum Assisted Closure Device). Mepitel is similarly put onto the transplanted area and thereafter a sponge covered by a transparent plastic drape. This is connected to a vacuum pump. The vacuum extracts fluid and stimulates proliferation of blood vessels.

Follow-up

  • If possible the operated area should be elevated to reduce postoperative edema and bleeding.
  • The sutures are removed after 7-14 days.

Skin graft

  • For a full-thickness graft, the compression bandage should remain untouched for about 1 week.
  • For split-thickness transplants, the compression bandage is to remain untouched for one week if the recipient site is considered clean. If there is danger of infection, the compression bandage should be changed and the graft should be inspected after 2-3 days.
  • VAC bandages are changed/removed after 3-5 days depending on the conditions.

Complications

  • Bleeding
  • Infections
  • Pain

Precautions

  • The skin graft should be protected from trauma and force for 2-3 weeks.
  • Exercises and training which may lead to damage of the graft should be avoided for 3-4 weeks.
  • Protect the graft and donor site from sun exposure.

Drug therapy of skin cancer (non-melanoma)

Chemotherapy is used only for palliative purposes and in cases of systemic spread of squamous cell carcinoma. Methotrexate and platininum-based chemotheraphy drugs are the most commonly used groups of medications.

Therapeutic targeting with epidermal growth factor receptor (EGFR) antibodies represents a new treatment opportunity in patients with EGFR-expressing tumors. (6)

For locally advanced and hereditary basal cell carcinoma (Gorlins syndrome), new studies have demonstrated efficacy of small molecular inhibitors (hegdehog inhibitor) against specific intracellular pathways (7). The first drug approved for clinical use is vismodegib Erivedge ®) (8.9

PROSEDYRER

Preparation of Chemotherapy, Spills, and Cleaning a LAF Bench

General

Preparation of chemotherapy outside of a pharmacy

At Oslo University Hospital, the pharmacy primarily prepares chemotherapy for each patient. If it is necessary to dilute/mix the medicine at the department, then this should occur in a designated room with a LAF bench (laminar airflow bench). Many chemotherapy drugs are carcinogenic and teratogenic, and it is extremely important for health personnel to follow directions for preparation of of these medications. At Oslo University Hospital, all chemotherapy should be prepared and administered by a nurse who has completed a cytostatic treatment course at Oslo University Hospital, or by nurses who are certified cancer nurses from Oslo University College.

Pregnant women and employees under physician orders not to temporarily or permanently work with chemotherapy drugs, should not handle or be exposed to these chemicals. Nursing mothers may handle chemotherapy drugs as long as they follow the general guidelines for chemotherapy handling. For each work place, there should be written guidelines for handling of chemotherapy drugs and for first aid for spills and maintenance of fume hoods etc..

Designated room with LAF-bench to dilute/mix chemotherapy

  • The ventilation should be separate from the main ventilation and fumes should be vented to the outside and if necessary, filtered.
  • The room should be well illuminated for visual control of the fluid.
  • The LAF bench should be a workbench having sterile, filtered air from the ceiling with defined speed and an approved fume hood. The bench should be routinely tested and approved.

Goal

  • To protect nurses and surroundings from exposure to cytotoxic chemicals and to preserve the sterility of the drug.

Handling of chemotherapy spills

Chemotherapy drugs are a heterogeneous group of drugs in which many are known mutagens, teratogens and/or carcinogens. Allergic reactions have also been reported. Studies show that there is a health risk during exposure of chemotherapy drugs and there are guidelines for minimizing exposure of health personnel to these chemicals. Workers in daily contact with these drugs will be more at risk due to the increasing use of chemotherapy. Chemotherapy spills refers to spills during preparation and leakage from infusion bags.

Goal

  • To ensure that spills of chemotherapy drugs or waste materials that contain these chemicals are handled in a safe way to protect health and safety.

Cleaning of LAF-bench

The Norwegian Work Authority recommends that each workplace should have written guidelines for handling chemotherapy drugs, first aid for spills, and maintenance of fume hoods etc. A LAF-bench (laminar airflow bench) is a bench protecting workers from the drug being prepared and also protects from microbiological organisms. Those who carry out cleaning should have training and knowledge of the risk for exposure to chemotherapy drugs.

Goal

  • Maintain a clean LAF bench
  • Avoid contamination and preserve the sterility of the drug 
  • Protect people and surroundings from exposure

Source

Applicable directives and guidelines (www.lovdata.no)

  • Warn against exposure to chemicals at the workplace (Kjemikalieforskriften §24), mandated by The Norwegian Labour Inspection Agency from 5 May 2001, last edition from 26 April 2005.
  • Guidance for chemical directives attachment VII Cytostatica from September 2003 (www.arbeidstilsynet.no).

Equipment

  Preparation of chemotherapy in a hospital

  • 2 pairs of gloves: vinyl gloves inside and sterile, powder-free latex gloves outside
  • Protective coat with long arms/plastic apron
  • Arm protectors
  • LAF bench
  • Dilution fluid
  • Syringes and cannulas
  • Sterile compresses
  • Disposable cloths
  • 70% ethanol
  • Absorbent benchcoat with plastic underside for the work bench
  • If a LAF bench is not used, use a protective mask with aerosol filter and protective goggles.

Handling of chemotherapy spills

Spill kit includes:

  • 2 pairs of nitrile gloves, long
  • 2 pairs of latex gloves, long
  • 2 pairs of shoe covers
  • Plastic coat\apron
  • 1 mask
  • 2 diapers
  • 1 bed absorbent bed sheet
  • 2 plastic bags with zippers (30 x 40 cm)
  • 4 thin, white plastic bags (60 x 90 cm)
  • Absorbant material   
  • 8 disposable wash cloths

Washing of LAF-bench

  • Plastic apron
  • Arm protectors
  • Gloves: either double vinyl gloves or special gloves
  • Disposable cloths
  • 70% ethanol
  • Bucket and soapy water
  • Waste container with plastic bag for chemotherapy waste (biohazardous waste)

 

 

Preparation

Preparation of chemotherapy outside of the pharmacy

For preparation of chemotherapy drugs, use gloves and a protective lab coat with long arms or tight-fitting cuffs.   Use two pairs of gloves where the inner pair is vinyl or other latex-free material. The outer glove should be sterile and of latex or other material which is impenetrable.  The gloves are recommended to be changed every half hour for preparation of chemotherapy drugs, and right away with spills.

  • Start the LAF-bench a minimum of 30 minutes before use.
  • Wash hands
  • Put on the inner gloves
  • Disinfect the work surface with 70% ethanol
  • Cover the work surface with a benchcoat. This should not cover the vent; otherwise, the bench will not function properly.
  • Read the dilution directions and find the necessary equipment and medications as described.
  • Choice of dilution system/fluids
    • A transfer cannula should be used in preference to a syringe where possible to maintain a closed system as much as possible.
    • If a syringe is used: use a syringe with Luer lock connection. These have a better connection between the syringe and the cannula.
  • Check the expiration on the drug packaging and infusion fluid.
  • Check that the drug in liquid form does not contain particles or visible solids.
  • Check that the packaging does not have any cracks or leakages.
  • Perform necessary calculations, date, and sign the work form.
  • Obtain another nurse to double check: right patient, work form, drug, dosage, fluid type and volume, as well as calculations.  All checks should be against the original ordination. The person doing the check should sign and date it.
  • Set out necessary equipment on the LAF-bench or where the work will take place. The equipment should be placed in the corner within the ventilation of the LAF-bench.  Remove the outer packaging of the sterile gloves and lay the gloves on the bench.
  • Put on the protective clothing (coat/apron and arm protectors)
  • Put on the sterile gloves in the bench
  • Disinfect the rubber membrane on the infusion bag and hood windows as well as the ampules.
  • Make sure the protective glass on the LAF-bench is pulled down to the correct work level as recommended by the manufacturer of the bench.

Handling of chemotherapy spills

All, except the workers who clean the spill, should leave the room.  Preferably, two people should help each other to remove the spill.  This way, one can ensure that proper precautions are taken.

At Oslo University Hospital, a packet is available from the pharmacy for chemotherapy spills.

Washing of LAF-bench

  • The LAF-bench should be operating under cleaning.
  • The sash should be down, as under normal working conditions.
  • Use a plastic apron, arm protectors, and gloves.

 

 

Implementation

Preparation of chemotherapy drugs outside of a pharmacy

Aseptic procedure

  •   To avoid turbulence of the sterile, laminar air stream:
    • Work at least 15 cm inside the perforation with steady movements
    • Avoid hands or other objects from coming between the airflow and the medicine.
  • Make only one medicine at a time.
  • A full syringe or finished bag should be labeled for the next preparation.  The label should be labeled with the patients name, birthdate, drug and dosage, preparation date, expiration, and the name of the person who prepared and checked the medicine.
  • Avoid spills and aerosol formation
    • Use a dry, sterile compress around neck of the ampule when it is broken.
    • When the cannula is removed from the syringe, hold a sterile compress around the barrel neck to catch any spills.
    • Hold the syringe/ampule such that the opening is directed away from the face.
    • For solid substances, solvent should be added along the glass wall to avoid whirling of particles.
    • With positive/negative pressure in the hood glass: apply a filter cannula first to reduce pressure.
    • With use of adapter: place adapter first in the infusion bag and connect to the hood glass with medicine.
    • When the air is removed from the syringe, place the cannula cap on the cannula again while the syringe is held vertically with the cannula upright. A sterile compress should be held around the opening between the cannula and the syringe to collect spillage.
    • Clean up spills at once
  • After each addition, the contents of the infusion container should be mixed well by inverting and repeating 5-6 times.
  • Infusion fluid which has been added to should be marked satisfactorily.
  • The finished solution should be scrutinized for solid or foreign particles. All solid should be dissolved.
  • If visible changes occur under the mixing procedure, the physician should be contacted and the fluid should not be used. Store the infusion fluid and packaging of the added drug and contact the pharmacy (chemist) for further clarification.
  • All used equipment should be rolled up in the benchcoat (alternatively, all used equipment can be placed in a plastic bag which can be tied or closed with zipper) and disposed of in box with plastic bag for chemotherapy waste/biohazardous waste.
  • LAF-bench should be stopped at least 30 minutes after use.

Multiple additions

  • Addition of multiple drugs for chemotherapy solutions should be avoided. If it is still appropriate, there should be clear documentation of the mixture.
  • Different chemotherapies can mix if their mixing properties are documented (and checked with pharmacist).

Handling of chemotherapy spills

  • Use two pairs of disposable latex\nitrile gloves, plastic coat, mask, shoe covers (used with floor spills) and protective goggles.
  • Lay the smallest diaper in the middle of the spilled fluid. Then, place the absorbent bed sheet over the diaper and the rest of the fluid. Use more diapers and absorbent material if necessary.
  • Dispose of used diapers, absorbent material, bed sheets, and gloves is appropriate waste container, which can be closed.
  • Use new gloves and wash thereafter with soapy water and disposable wash cloths a minimum of three times. Use a new cloth before each wash. Used cloths should not be put back in the wash solution.  Used cloths and gloves should be disposed in the appropriate waste containers (in plastic bags which can be closed).
  • The plastic bags with used equipment should be disposed of in the appropriate containers which are properly labeled.

Washing of LAF-bench

  • Other than a cannula bucket, nothing should be stored in the bench after the last preparation.
  • Washing with 70% ethanol is sufficient if there are no visible spills.
  • For visible spills, wash the bench with soapy water and spray afterwards with 70% ethanol (see procedure under). Soapy water is the most effective for removing chemotherapy spills.

Routine washing

  • Washing should be done every 1-4 weeks depending on frequency of use.
  • Spills and dust pose risks for washing.
  • It is important that any remaining solution of chemotherapy is not spread under washing.
  • Use disposable cloths.
  • To avoid contamination of washing water, the washing hand should not be dipped in the water.
  • Wash with slow movements and use a new cloth as needed.
  • Cloths that have been in contact with the bench should not be put back in the washing water and should be discarded in proper waste container.
  • Wash first the walls from top to bottom with soapy water (the cleanest to the most contaminated) – place the cloth on a squeegee for hard-to-reach areas.
  • The filter in the ceiling of the bench should not be washed.
  • Wash the work surface in the bench – wash from back to forward (from the cleanest to the most contaminated).
  • Raise the work surface.
  • Wash the work surface on the underside, especially the closest, perforated part.
  • Then wash the underside bottom of the work surface.
  • Wash thereafter all surfaces (not the ceiling) with 70% ethanol.
  • Remove protective clothing.
  • Discard all protective clothing for one-time use and washcloths in the appropriate waste container.
  • Wash hands.
  • Replace the cannula bucket.
  • There should be a record for bench washing; the employee who washes should sign and date the record.

Follow-up

Aerosol formation with spraying or squirting can occur:
  • when a syringe is used and cannula is retracted for transfer
  • when an ampule is broken
  • when air is removed to measure volume
  • with a leak in a syringe or IV catheter
  • with waste handling

First aid if contact with chemotherapy drugs

  • Skin: Rinse well with water for 15 minutes. Wash contacted area with regular soap.
  • Eyes: Rinse well with water, or use spray bottle with NaCl 9 mg/ml (at least 20-30 minutes of continual rinsing).
  • Contact a doctor.

Sun Exposure under Drug Therapy

General

Correct information about the possibility of sunbathing may affect patients health and quality of life.

Precautions in connection with sunbathing should be followed under medical cancer treatment and for 2-3 weeks after end of treatment.

Drug cancer treatment includes chemotherapy, antibodies and other drugs used in cancer treatment.

Indication

Sun exposure in connection with drug cancer treatment.

Goal

Prevent sun damage of the skin during and after cancer drug treatment.

Definitions

Photosensitivity

Increased sensitivity to ultraviolet light have been associated with certain drugs used in cancer treatment. Photosensitivity reactions can be expressed in various ways. They can be phototoxic, which is by far the most common, or photoallergic (8,14). Druginduced photosensitivity is mainly caused by wavelengths in the UVA range, but UVB rays may also be involved (8).

Phototoxicity

A phototoxic reaction is reminiscent of a reinforced sunburn, with redness, edema, pain and increased sensitivity in sun-exposed areas of the skin. This is caused by a photochemical reaction of a photosensitive drug and irradiation of sunlight on the skin, which leads to skin cell death. In severe cases, blistering can occur (14). Symptoms may appear immediately or as a delayed inflammatory reaction (3). Higher doses of medication will give an increased risk of skin reaction (14). Healing of skin area will often lead to a hyperpigmentation that can last from weeks to months before they might disappear (8). Although the incidence of drug-induced photosensitivity is unknown, phototoxic reactions is possibly more common than is diagnosed or reported.

Photoallergy

An immunological reaction usually occurring 24-72 hours after sun exposure. The reaction degenerates as an itchy, eczema-like eruptions. In acute cases, one can see rash liquids. The prevalence of eczema is usually limited to sun-exposed skin, but can in severe cases spread to larger areas of the body. Unlike a phototoxic reaction, photoallergy is less dependent on the dose of the causative drug (8).

Photoinstability

Some drugs can be degraded when exposed to light. This can happen both before administration and when the drug is circulating in the body. This degradation can cause redness/rash and edema of the skin. This applies especially for dacarbazine (9). It is unknown whether the effect of the drug is affected and it is therefore recommended that one avoids direct sunlight as long as the drug is active in the body.

PPE ( palmoplantar erythrodysesthesia = Acral erythema )

PPE is also called hand-foot syndrom. The condition starts with altered skin sensation that develops into burning pain, swelling and redness of palm of the hands and soles of the feet. The symptoms can also occur in other parts of the body that is subjected to pressure, for example under tight clothing. In severe cases large blisters and ulceration can develop. The pain can be so severe that daily activities is limited.

PPE is often seen with liposomal doxorubicin (Caelyx®) and high dose cytarabine, but may in principle occur with any anthracyclines, taxanes and fluorouracil (5- FU® ) (9,14) .

Acne-like rash

Pimple-like eruptions in skin areas with a lot of sebaceous glands such as the face, scalp, chest and neck. In contrast to common acne, the liquid-filled blisters does not contain any bacteria (9,10,15).

Hyperpigmentation

Hyperpigmentation is a common side effect in patients receiving chemotherapy, especially alkylating drugs and antibiotics with cytostatic effect. The area that has increased pigmentation may be localized or diffusely distributed. It can occur in the skin, mucous membranes, hair and nails. Pigment changes can be normalized upon discontinuation of the drug, but it may also persist.

Fluorouracil is one of the most common drugs which can provide hyperpigmentation. Others are; metotrexate, busulfan, doxorubicin liposomal, Hydroksyurea®, procarbazine, bleomycin, cyclophosphamide, doxorubicin , ifosfamide, tegafur, mitoxantrone, daunorubicin, fluorouracil, cisplatin, carmustine, thiotepa, docetaxel, vinorelbine, vincristine, imatinib and combination regimens (14).

An increased pigmentation in sun-exposed areas with the use of methotrexate, fluorouracil and capecitabine is described (16,17,18). Beyond that there is little evidence in the literature  that hyperpigmentation aggravates by sun exposure.

Radiation Recall Dermatitis (RRD)/Photo Toxic recall reaction

Flares of an inflammatory skin reaction in an area of ​​previous radiation damaged skin resulting from sunburn or external radiation. RRD can occur from months to years after the initial radiation damage.

Drugs that can provide RRD are; bleomycin, capecitabine, cyclophosphamide, dactinomycin, cytarabine, daunorubicin, docetaxel, doxorubicin liposomal, doxorubicin, etoposide, fluorouracil, gemcitabine, Hydroksyurea® , idarubicin, lomustine, melphalan, methotrexate, paclitaxel, tamoxifen and vinblastine (14). EGFR inhibitors (cetuximab , gefitinib and erlotinib) may also cause other skin reactions that may be exacerbated by sun exposure (9,10,19).

Preparation

The patient is given written and verbal information by the medical responsible doctor and nurse at the start of the drug cancer treatment, and it is repeated as necessary.

Implementation

General Precautions

Prevention and protection:
  • Limit sun exposure during the first days after the cure.
  • Observe skin daily to detect any skin reactions early.
  • Avoid getting sunburned.
  • View extra care between 12.00-15.00 (2).
  • Wear protective clothing and headgear (2,3,4,5,6).
  • Wide-brimmed hats protect better than caps (2.4).
  • Please note that the window glass does not protect against UVA rays (7).
  • Use sunscreen; to protect against UVA and UVB rays, a minimum SPF 15 (3,4,6,8) is applied several times daily.
  • Use mild skin care products without perfumes.

In case of an eruption, sun exposure (including solarium) should be avoided until the skin is healed. Adverse skin reactions can be alleviated with moist and cooling compresses. Mild cortisone salves can also be highly effective. For very severe cases, systemic cortisone might be necessary (3,6,7,9).

When a photosensitive reaction occurs, it is important to consider what other medications the patient is receiving which can also trigger such reactions. For example, steroids, some antibiotics, diuretics and NSAIDs.

Medicaments that most commonly cause skin reactions

Medicament Common reactions Remedial action
Dakarbazin (DTIC)


Phototoxic/photoinstability
See general precautions
Redness in skin, tingling of the scalp and general unwellness
Avoid sunlight completely the day of the treatment (9)
Methotrexate
Phototoxic

See general precautions
Acne-like rash
Avoid direct sun exposure, heat and humidity (9,10). Avoid soap, alcohol based skin products (9). Use moisturizing products and oil bath (4,9,10).
Palmoplantar erythrodysesthesia = Acral erythema (PPE)

Preventive: Pyridoxin (vitamine B6) (2,6,9)

Avoid sunlight, heat, pressure against the skin and tight clothing can according to some studies have an effect (11,12,13). Use moisturizer.

Treatment/relief: Cortisone salves, cortisone tablets, cold compress, cold baths

(2, 9)

Fluorouracil (5-FU®)

 

Phototoxic See general precautions
Palmoplantar erythrodysesthesia = Acral erythema (PPE) Preventive: Pyridoxin (vitamin B6) (2,6,9)

Avoid sunlight, heat, pressure against the skin and tight clothing can according to some studies have an effect (11,12,13). Use moisturizer.

Treatment/relief: Cortisone salves, cortisone tablets, cold compress, cold baths   (2, 9)

Radiation recall
Treatment as with phototoxic

Kapecitabin (Xeloda®)

 

Phototoxic See general precautions
Palmoplantar erythrodysesthesia = Acral erythema (PPE)

Preventive: Pyridoxin (vitamin B6) (2, 6, 9). Preventive: Pyridoxin (vitamin B6) (2, 6, 9)

Avoidance of sunlight, heat, pressure against the skin and tight clothing can according to some studies have an effect (11,12,13). Use moisturizer.

Treatment/relief: Cortisone salves, cortisone tablets, cold compress, cold baths (2, 9)

Vinblastin

 

Phototoxic
See general precautions
Radiation recall Treatment as with phototoxic
Doxorubicin liposomal (Caelyx®)
Palmoplantar erythrodysesthesia = Acral erythema (PPE) Preventive: Pyridoxin (vitamin B6) (2, 6, 9)

Avoidance of sunlight, heat, pressure against the skin and tight clothing can according to some studies have an effect (11,12,13). Use moisturizer.

Treatment/relief: Cortisone salves, cortisone tablets, cold compress, cold baths (2, 9)

Tegafur

 

Phototoxic
See general precautions
Palmoplantar erythrodysesthesia = Acral erythema (PPE) Preventive: Pyridoxin (vitamin B6) (2, 6, 9)

Avoidance of sunlight, heat, pressure against the skin and tight clothing can according to some studies have an effect (11,12,13). Use moisturizer.

Treatment/relief: Cortisone salves, cortisone tablets, cold compress, cold baths    (2, 9)

EGFR-hemmere

(Cetuximab, panitumab, erlotinib, gefitinib, lapatinib, vandetanib)

Phototoxic
See general precautions
Acne-like rash
Avoid direct sun exposure, heat and humidity (9,10). Avoid soap, alcohol based skin products (9). Use moisturizing products and oil bath(4, 9, 10).

Beyond the medications listed in the table the literature gives som evidence that these substances may cause phototoxic skin reactions :

  • paclitaxel (Taxol®)
  • docetaxel (Taxotere®)
  • hydroxycarbamide ( Hydroksyurea® )
  • imatinib ( Glivec® ) and Dapson® and that paclitaxel can provide radiation recall .

References


  1. LOV-1999-07-02-63 Pasientrettighetsloven - pasrl. Lov om pasientrettigheter.
  2. Polovich M, White JM, Kelleher LO. Chemotherapy and biotherapy guidelines: recommendations for practice. Pittsburgh, PA: Oncology Nursing Society; 2005.
  3. González E, González S. Drug photosensitivity, idiopathic photodermatoses,and sunscreens. J Am Acad Dermatol 1996;35:871-85;quiz 886-7.
  4. Liffrig, JR. Phototrauma prevention. Wilderness Environ Med 2001;12:195-200.
  5. Tan E. Skin toxicity of chemotherapy drugs [created 2007, last updated  2010 Mar 5]. Hentet 1. desember 2010 fra: http://dermnetnz.org/reactions/chemotherapy-toxicity.html
  6. Gould JW, Mercurio MG, Elmets CA. Cutaneous photosensitivity diseases induced by exogenous agents. J Am Acad Dermatol 1995;33:551-73.
  7. Payne, AS & Bernandin, RM. Sunburn [topic last updated 2010 Oct 06]. I: BMJ Best Practice. Hentet 23. november 2010 fra http://bestpractice.bmj.com
  8. Zhang AY, Elmets CA. Drug-induced photosensitivity [updated 2010 Jan 15]. Hentet 1. desember 2010 fra: http://emedicine.medscape.com/article/1049648-overview
  9. Ulrich J, Hartmann JT, Dörr W, Ugurel S. Skin toxicity of anti-cancer therapy. J Dtsch Dermatol Ges 2008;6:959-77.
  10. Agero AL, Dusza SW, Benvenuto-Andrade C, Busam KJ, Myskowski P, Halpern AC.Dermatologic side effects associated with the epidermal growth factor receptor inhibitors. J Am Acad Dermatol 2006;55:657-70
  11. Alley E, Green R, Schuchter L. Cutaneous toxicities of cancer therapy. Curr Opin Oncol 2002;14:212-6.
  12. Mangili G, Petrone M, Gentile C, De Marzi P, Viganò R, Rabaiotti E. Prevention strategies in palmar-plantar erythrodysesthesia onset: the role of regional cooling. Gynecol Oncol 2008;108:332-5.
  13. Tanyi JL, Smith JA, Ramos L, Parker CL, Munsell MF, Wolf JK. Predisposingrisk factors for palmar-plantar erythrodysesthesia when using liposomal doxorubicin to treat recurrent ovarian cancer. Gynecol Oncol 2009;114:219-24.
  14. Payne AS, Savarese DMF. Cutaneous complications of conventional chemotherapy agents. I: UpToDate [version 18.2 2010]. Hentet 1. desember 2010 fra: http://www.uptodate.com
  15. Heidary N, Naik H, Burgin S. Chemotherapeutic agents and the skin: an update. J Am Acad Dermatol 2008;58:545-70.
  16. RELIS Sør. Hyperpigmentering av cytostatika og forverring av sollys. I: RELIS database 2010, Spm.nr 4736. Hentet 1. desember fra: http://relis.arnett.no/Utredning_Ekstern.aspx?Relis=2&S=4736
  17. Hendrix JD Jr, Greer KE. Cutaneous hyperpigmentation caused by systemic drugs. Int J Dermatol 1992;31:458-66.
  18. Schmid-Wendtner MH, Wendtner CM, Volkenandt M, Heinemann V. Clinical picture: leopard-like vitiligo with capecitabine. Lancet 2001;358(9293):1575.
  19. Segaert S, Tabernero J, Chosidow O, Dirschka T, Elsner J, Mancini L, et al. The management of skin reactions in cancer patients receiving epidermal growth factor receptor targeted therapies. J Dtsch Dermatol Ges 2005;3:599-606.

Radiation therapy of skin cancer (non-melanoma)

Radiation therapy is appropriate for basal cell carcinoma in central parts of the face in cases where the patient's general health condition will complicate surgery, and is often combined with surgical treatment.

Photodynamic therapy (PDT) provides a successful cure rate of around 90% when the method is correctly performed.

PDT is appropriate for: 

  • small or superficial basal cell carcinoma 
  • actinic keratoses
  • carcinoma in situ 
  • certain squamous cell carcinomas
  • multiple lesions

PROSEDYRER

Radiation therapy for skin cancer

General

Radiation treatment of non-melanoma skin cancer usually includes treatment of visible and palpable changes with margins and can be used for primary treatment or as preoperative or postoperative treatment. In some cases, it is also combined with chemotherapy. For difficult localizations and spreading, additional mapping with CT dosage-planning and more complicated treatment arrangements are required.

Radiation of basal cell carcinoma provides a cure rate of over 90%. Squamous cell carcinoma and other histological groups respond well to radiation treatment with a high success rate.

For brachytherapy, the radiation source is placed in or close to the tumor. In this way, the cancer cells obtain a high dose of radiation while the dose to the surrounding normal tissue can be limited. Brachytherapy can also be used in and around the nose (columella), in eyelids, and lips.

Whole-body radiation is used for mycosis fungoides.

Lymph node radiation is appropriate for squamous cell carcinoma which has metastasized or has a high risk for metastasis. For extremity-localized Kaposi's sarcoma, the treatment takes place in a water bath. For Merkel cell carcinoma, radiation treatment is often part of a combination of treatments.

Indications

  • Squamous and basal cell carcinoma. Appropriate for localizations in and around the ears, in the central facial triangle, and for larger, difficult operation localizations.
  • Kaposi's sarcoma
  • Mycosis fungoides 
  • Merkel cell carcinoma 

Goal

  • Curative treatment
  • Palliation against pain, bleeding, and other symptom relief. 

Definitions

Target Volume

 

 

Target volume definitions from ICRU
(International Commission on Radiation Units and Measurements)

GTV (= Gross Tumor Volume)

Tumor volume

Palpable or visible/identifiable area of malignant growth.

CTV (= Clinical Target Volume)

Clinical target volume

Tissue volume which contains GTV and/or subclinical microscopic malignant disease.

ITV (= Internal Target Volume)

Target volume

Volume containing CTV and one inner margin taking into account inner movements and revisions of CTV. 

PTV (= Planning Target Volume)

Planning volume

Geometric volume containing ITV and one Setup margin taking into account variations for patient movements, variations in patient positioning, and field modeling.

Preparation

For basal cell and squamous cell carcinomas < 4 cm in diameter which are not deeply infiltrating (max 1.5-2 cm), manually simulation is used with area margins of 0.5 cm outside the visible and palpable tumor.

For larger diameters, the margins should be increased to 1 cm especially when using X-rays.

Deeper and larger lesions require dose plan contouring with GTV and an ITV at a minimum of 1 cm according to normal guidelines. Many of these lesions can be treated with electrons, while others require multiple-field photon radiation.

For brachytherapy, the patient is placed under general anesthesia and the catheter is inserted into the tumor. Dosage planning is done after the radiation sources are in place.

Implementation

The radiation treatment is carried out mostly on an outpatient basis with daily treatments and weekly doctor follow-up. Individual assessments may require postponement of treatment. Causes may be:

  • general health status
  • risk of bleeding 
  • location of lesion

Standard Treatment

  • For lesions < 4 cm, 4 Gy x 12–15 is administered over the course of 2–4 weeks.
  • For lesions > 4 cm, 3 Gy x 17–18 is administered over the course of 3–4 weeks.
  • For lesions > 8 cm, 2.5 Gy x 25, possibly 2 x 35

Brachytherapy

  • Thin plastic tubes are inserted in or around the tumor. 
  • These are connected to a computer-controlled remote afterloading machine which pushes a radioactive isotope into the plastic tube for a period of time.
  • The dose is individual for each patient.

Follow-up

The first check after treatment for all patients is 6-8 weeks after finishing treatment to assess the result and side effects. Further follow-up is usually transferred to the referring physician or primary care physician.

Patients who are especially prone to skin cancer (for example immune-suppressed or hereditary factors) or have a more extensive illness are followed-up at a cancer clinic.

Side effects

  • Skin soreness
  • Formation of scars
  • Symptoms from surrounding normal tissue, for example salivary glands, mucosa, and throat 

The radiated area must be protected from sun exposure for the first two years after treatment as the skin in this area can be easily sunburned.

Radiation therapy for skin cancerRadiation therapy for skin cancerRadiation treatment for skin cancer

Photodynamic Therapy (PDT) for Skin Cancer

General

Photodynamic therapy was first utilized at Roswell Park in Buffalo, New York with photopherin in the late 1980's. A Canadian group started using used aminolevulinic acid (ALA) in 1990. Oslo University Hospital started development with photopherin and ALA in 1991 and later developed a sensitizing cream based on an ester derivative of ALA which is marketed under the name Metvix®.

Metvix® is a cream containing methylaminolevulinic acid. In cells, this is metabolized to protoporphyrin IX through heme synthesis. Neoplastic tissue breaks down protoporphyrin IX quicker than healthy tissue, which leads to a difference in the concentration of the light-sensitive protoporphyrin IX. When the cells are exposed to the red portion of the light spectrum, a singlet oxygen is created which damages cell mitochondria and cell membranes leading to cell death. This selective effect depends on cream being absorbed into the neoplastic cells, that the difference in the concentration of protoporphyrin IX is great between the healthy and neoplastic cells, and that a sufficient dose of light reaches the tissue.

Both preparation and application of the cream are associated with pain to a varying degree, depending on size, location on the body, and the patient's pain tolerance.

Images of patient before and after treatment:

Before

After

Indication

  • Superficial and/or nodular basal cell carcinoma
  • Actinic keratoses with squamous cell atypia, possibly in situ or Bowen's disease

Goal

  • Cure the disease and achieve the best possible cosmetic result.

Equipment

  • Curette
  • Knife
  • Needle
  • Pads of gauze 
  • Local anesthesia
  • Adrenalin
  • Glass microscope slide for cytology
  • Lamp with calibrated light dosage for area and time
  • Metvix® with occluding bandage

Preparation

Aspirin use should be stopped 5 days before treatment and warfarin should be stopped 1-2 days before treatment.

Implementation

Lesions to be treated with PDT must be pretreated by scraping with a knife or curette to remove dead cells and fibrotic tissue as much as possible.  Possible bleeding must be stopped before the cream is applied. The creams should be applied over the lesion with an occluding bandage approximately 3 hours before light therapy.

  • The lesion(s) are examined by a doctor and suitable lesions are marked and drawn on a bodymap.
  • Measure lesion(s)
  • In certain cases, a histology or cytology specimen is taken before the treatment is initiated. The cells are scraped from the surface of the tumor with a curette or knife and the material is placed onto a slide.
  • For thick tumors, some of the tumor tissue is scraped away before the cream is applied. For thinner lesions, the dead cells are scraped away from the surface.
  • In some cases, the skin is punctured with a needle along the periphery of the lesion in order for the cream to be absorbed deeper into the tumor.
  • The cream (Metvix®) containing light sensitive material is applied and the lesion is covered.

The patient waits for 3 hours.


  • The bandage is removed and the surface cream is wiped away. 
  • A pad of gauze is applied over the lesion with a hole, which is slightly larger than the lesion.
  • The lesion is treated for approximately 8 minutes with a lamp calibrated to deliver a dose of about 37 Joule/cm2, depending on the diameter and depth of the lesion. 
  • If the lesion is located in the face, the eyes are covered with small shields which are fastened with aluminum tape to exclude light. If the lesion is on the eyelid, a shield is placed underneath the eyelid after local anesthesia is applied to the eye.

Pain

This procedure may cause pain. The need for pain medication varies and depends on what area of the body is treated.

  • Treatment in the face, fingers, and legs may cause greater pain than treatment on other parts of the body.
  • Large lesions are often more painful to treat than smaller ones. For large lesions, local anesthesia is often administered in combination with systemic pain medication. This type of pain is difficult to treat.
  • Mild pain can be alleviated by rinsing the lesion with water while irradiating, or by raising the lamp slightly away from the lesion.

Follow-up

One treatment is not always sufficient. For more extensive and deeper lesions, the patient must return for a new treatment after 1-2 weeks.

The pain may, in some cases, last throughout the evening and to the next day.

During the first week, a crust will develop in the treated area. This will fall off during the second or third week where new skin forms underneath.  The patient should return to monitor the treatment result after 2-3 months.

Photodynamic therapy (PDT) for skin cancerPhotodynamic therapy (PDT) for skin cancerPhotodynamic therapy (PDT) for skin cancer

Complication treatment of skin cancer (non-melanoma)

Surgery, chemotherapy, and radiation therapy cause side effects to varying degrees.

It may be necessary to provide supportive care in order for the patient to complete and gain the full effect of planned treatment.

Supportive care can also be provided to reduce side effects and improve the patient's quality of life during and after treatment.

PROSEDYRER

Treatment of Nausea Induced by Chemotherapy

General

The majorities of chemotherapy drugs are emetic to varying degrees and may cause nausea and vomiting. Today, there are efficient antiemetic drugs that can significantly reduce the side effects.

Other factors that can aggravate or prolong the presence of nausea and vomiting are: pain, anxiety, electrolyte disturbances, constipation, dyspepsia, and ulcers.

There is a distinction between acute nausea, which occurs within the first 24 hours, and late nausea, which occurs later than 24 hours after the treatment.

Acute nausea can be effectively treated with 5HT3-antagonists (ondansetron, tropisetron, palonosetron), and possibly combined with steroids. Dopamine antagonists (metoklopramid, metopimazine) also have some effect on acute nausea. If this treatment is not effective, it may be improved with aprepitant.

If standard prophylaxis and treatment of nausea is not satisfactory, other nausea regimens should be tried.

Indication

  • Nausea induced by chemotherapy drugs.

Goal

  • Prevention and treatment of nausea and vomiting.

Definitions

Chemotherapies according to emetic potential

High emetogenicity   

Group 1

Moderate emetogenicity   

 Group 2

Low/minimal emetogenicity

Group 3

All cisplatin-containing regimens (CiFu, GemCis, BEP, TIP, VIP, PV, AP, EDP, DHAP, ECX, weekly dose cisplatin, and others) BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosfamide, vincristine, prokarbazine, prednisolone)
Doxorubicin/epirubicine weekly dose
Doxorubicin/ifosfamide Bendamustine
Docetaxel
FEC-60 og FEC-100
(fluorouracil, epirubicin, cyklophosfamide)
Carboplatin
ENAP (etoposide, mitoxsantrone, cytarabine, prednisolone)
ABVD (doxorubicin, bleomycin, vinblastine, dakarbazine Carboplatin/pemetrexed
FLv (fluorouracil)
FOLFIRINOX
Carboplatin/vinorelbine
FuMi (fluorouracil, mitomycin)

CHOP (cyclophosfamide, doxorubicin, vincristine, prednisolone)
Gemcitabine

CHOEP (cyclophosfamide, doxorubicin, vincristine, etoposide, prednisolone)
Methotrexate weekly dose
   Dakarbazine
Navelbine
      ECO/ACO (epirubicin/doxorubicin, cyclophosfamide, vincristine)
Paclitaxel
       EOX (epirubicin, oxaliplatin, capecitabine)
Pemetrexed
      EPOCH-F (etoposide, prednisolone, vincristine, cyclofosfamide, doxorubicin, fludarabine)

    EPOCH-F (etoposide, prednisolone, vincristine, cyclophosfamide, doxorubicin, fludarabine)
 
    FLIRI (fluorouracil, irinotecan)
 
    FLOX (fluorouracil, oxaliplatin)    
   Gemcitabine/carboplatin      
   HD-Cytarabine
   
    HD-Methotrexate    
  IGEV (ifosfamide, gemcitabine, vinorelbine)
  
   IME (ifosfamide, methotreksate, etoposide)  
   Irinotecan  
   Streptozocin  
   Vorphase (cyclophosfamide)
 

References

  1. Lehne G, Melien Ø, Bjordal K, Aas N, Mella O. Kvalme og oppkast ved cytostatikabehandling i: Dahl O, Christoffersen T, Kvaløy S, Baksaas. Cytostatic Medication cancer treatment. 7. edition. Oslo. Department of Pharmacotherapeutics and The Norwegian Cancer Society, 2009, p 119-130.

Preparation

Nausea regimens are selected according to the emetogenicity of the relevant drugs.

  • Inform about the risk for and treatment of nausea. 
  • In the event of anxiety or conditional nausea, give tranquilizers if necessary.

Implementation

  • Start with an optimal antiemetic regimen starting with the first cycle of chemotherapy in order to counteract the amplification of the nausea that often occurs with a new treatment.
  • Start the oral antiemetic regimen 1-2 hours before chemotherapy and approx. 15-30 minutes before an intravenous injection.
  • If the patient is already nauseous, the medication should be administered parenterally or rectally.

Antiemetic regimens

Mildly emetic chemotherapy

  • Metoclopramide 10 mg is given intravenously before treatment with cytostatic agents.
  • Metoclopramide 10 mg is given orally uptil 3 times.

Moderately emetic chemotherapy

Ondansetron 8 mg orally 2 x daily. In the event of nausea before treatment, give ondansetron intravenously. If this has little effect, try ondansetron 8 mg x 3 or change to a 5HT3-antagonist, for example, tropisetron 5 mg orally/intravenously or palonosetron 250 µg intravenously.

Highly emetic chemotherapy, or if other treatment does not help

For highly emetic chemotherapy drugs, or if other treatment is not adequate, a 5HT3-antagonist can be given orally or intravenously. It should be combined with dexamethasone 8-16 mg intravenously ½-1 hour before treatment, and further, 8 mg x 2 intravenously or orally on the first day.

In addition, dopamine antagonists may be given, for example, metoclopramide 10 mg x 3.

In some cases, traditional nausea treatment is not sufficient. In this case, the patient can be treated with aprepitant. Aprepitant is used for highly emetic regimens and for patients where the usual antiemetic treatment has failed during moderate emetogenic treatment. Aprepitant is given orally 1 hour before chemotherapy and is combined with dexamethasone and 5HT3-antagonists:  125 mg capsules orally on day 1, then 80 mg orally on days 2-5, depending on the duration of the treatment. Aprepitant can enhance the effect of taxane and etoposide, as well as vinorelbine, and can reduce the effect of warfarin.

The regimen is repeated daily if highly emetic treatment is given over a number of days.

Delayed nausea

Aprepitant in combination with dexamethasone and 5HT3-antagonists is preferable if there is a high risk of delayed nausea and vomiting. This is offered especially to patients who have previously experienced delayed nausea.

Conditional nausea

In the event of conditional nausea, diazepam or other tranquilizers may be considered. Diversion or desensitization can be tried in more serious cases.

Follow-up

Ondansetron can have a constipating effect. Use of a laxative for several days should be considered.

Nutrition during Cancer Treatment

General

Monitoring the patient's nutritional status is an important part of cancer treatment. The goal is to identify malnutrition as early as possible in order to initiate treatment as quickly as possible.

Measures include diet according to symptoms and the nutritional condition. The patient should be offered nutrition-rich food, snacks, nutritional drinks, tube feeding and intravenous nutrition.

Because cancer treatment breaks down both cancer cells and normal cells, the body requires an adequate supply of nourishment to increase growth of new cells. 

In cancer patients, the sensation of hunger is not always present to the necessary degree. In these cases, it is important to take actions to improve the nutritional status of the patient. The nutritional condition is easiest followed by monitoring body weight over time.

Indication

  • Cancer treatment (chemotherapy, radiation, surgery).

Goal

  • Maintain nutritional status in order for the patient to have the best possible conditions for implementing treatment.

Definitions

Subjective Global Assessment (SGA)

Subjective Global Assessment (SGA) is a scheme for classifying the patient's nutritional status.

Other tables that are frequently used are Malnutrition Universal Screening Tool (MUST), Mini Nutritional Assessment (MNA) and Nutrition Risk Score (NRS). In principle, these schemes are prepared in the same way as SGA, but they are not validated for patients with cancer.

Weight loss is one of the most important signs of change in nutritional status. A weight loss of more than 15% over the past 6 months or more than 5% over the last month is a significant and serious weight loss. If the weight loss occurs in combination with low BMI (body mass index) (< 20 kg/m2 for adults) and/or a food intake of less than 60% of the calculated requirement over the past 10 days, the patient will be malnourished or be at nutritional risk.

Calculation of nutrition and fluid requirements

  • Ambulatory patients:  30-35 kcal/kg/day
  • Bed-ridden patients:  25-30 kcal/kg/day
  • Elderly above 70 years:  Recommended amount is reduced by 10%
  • Fluid requirement:  30-35 ml/kg/day

Nutritionally enriched diet / enrichment of food and beverages

Nutritional beverages may be used as a meal in itself or between meals. Nutritional drinks can be a more valuable snack than "normal" food, because it is often easier for the patient to drink than to eat. It has been shown that if nutritional drinks are introduced as snacks, it does not affect the energy intake during the main meals.

There are a number of ready-made nutritional drinks on the market. Some of the products are of nutritionally complete. They contain carbohydrates, protein and fat and are supplemented with all the necessary vitamins, minerals and trace minerals and possibly fiber. Some of these products can be used as the sole source of nutrition. The energy content varies from 85-200 kcal/100 ml and some products have a high protein content. Other nutritional drinks are supplement drinks adjusted to individual needs such as allergies, intolerance and special conditions associated with illnesses.

The products are also adapted to age, and the dose is determined individually by a clinical dietician/doctor.

Many patients prefer homemade nutritional drinks based on full fat milk, cream, ice cream, fruit and possibly flavor supplements. These are free of additives and have a fresher taste. The energy and protein content is close to the commercial products and at the same time they are more sensibly priced.

Tube feeding

Tube feeding is preferable to total parenteral nutrition (TPN) when the digestive system is working. Nutrition supply to the intestine is more physiological. It protects against bacterial growth, maintains the intestine's mucous membrane structure and function, and promotes motility. Tube feeding involves less risk of metabolic complications.

Tube feeding is used in the event of

  • insufficient food intake (less than 60% of energy requirements) over the past 5-7 days despite oral intake
  • weight loss >2 % over the past week, >5 % over the past month or >10% over the past 6 months
  • danger of weight loss due to planned treatment
  • low albumin values (under 35 g/l, lower limit for normal area)
  • stenosis with feeding obstacles in pharynx/gullet

Tube feeding must not be used for the following conditions.

  • Paralysis or ileus of the alimentary tract
  • Short bowel syndrome
  • Serious diarrhea
  • Serious acute pancreatitis
  • Obstruction of the intestine
  • Serious fluid problems

Tube feeding solutions

The tube feeding solution must be nutritionally complete because they shall be used as the sole source of nourishment. The most frequently used are standard (1 kcal/ml), fiber-containing (1 kcal/ml) or energy-rich (1.5 kcal/ml). There are also tube feeding solutions which are adapted to patients with digestion and absorption problems, patients with diabetes or lactose allergy, and intensive care patients.

Tube feeding solutions, which are adapted to cancer patients are energy-rich (1.5 kcal/ml). They contain extra omega-3 fatty acids, rich in MCT acid and enriched with extra vitamins and minerals. Recommended dosage is 500 ml/day.

Parenteral nutrition

Parenteral nutrition should only be used if food by mouth or tube feeding cannot be maintained. Parenteral nutrition can also be used as a supplement to tube feeding or ordinary food. 

Precautions must be taken for kidney failure, heart failure, lung failure, large fluid and electrolyte loss, diabetes mellitus and liver failure.

Preparation

The patient is classified as well-nourished, somewhat malnourished or seriously malnourished on the basis of information about weight development, food intake, symptoms and physical functioning. This classification has been shown to correlate well with more objective measurements of nutritional status and morbidity, mortality and quality of life.

Actions include individual adjustment of diet according to symptoms and nutritional status.

Tube feeding

The end of the tube is often inserted into the stomach. In the event of poor gastric function, total gastrectomy or pancreatic resection, the feeding tube should be inserted in the duodenum or jejunum. The position of the feeding tube is vital for the choice of feeding-tube solution and mode of administration.

The most common solution is to insert the tube nasogastrically, but it can also be done through the abdominal wall (PEG).

Parenteral nutrition

It is preferable to use intravenous or parenteral nutrition as a supplement to oral/tube feeding instead of only TPN (total parenteral nutrition).

  • Central veins must be used for TPN with high osmolality.
  • Peripheral veins can be used for short-term parenteral nutrition. In this case, a large vein on the forearm is used and a small needle. Nutrition is then given as more diluted solutions.

Implementation

All patients are weighed regularly (1–2 times each week). This is a prerequisite to being able to register changes in the nutritional status.

Varied and healthy food contributes to the growth of new cells and enhances the immune system.

  • Fruit, berries and vegetables are rich in vitamins, minerals, antioxidants and fiber, which contribute to enhances the immune system and contributes to keeping the digestive system working.
  • Fish, shellfish, poultry, meat, eggs, cheese, milk, beans and nuts are rich in proteins, which are the building blocks of new cells.
  • Bread, rice, pasta, porridge and breakfast cereals supplement the diet with proteins, carbohydrates, fiber, vitamins and minerals.
  • Oil, margarine, butter, mayonnaise products, nuts, cream, heavy cream, desserts etc. are fat and energy rich products, which are important to maintain the energy intake at a satisfactory level.
  • Cancer patients also have a requirement for plenty of fluid, especially during treatment, to discharge waste.

Often, the patients must have an individually adjusted diet. In the event of lack of appetite, it is generally more important that you eat (enough food) than what you eat (the right food). It is beneficial to have small portions and for the food to be as abundant in energy as possible. These patients will often have a need for 6–8 small meals everyday to obtain their energy requirements.

Enrichment of food and drink is done in order to increase the energy content of the food product without increasing the volume. Full-fat products such as full-fat milk, cream, butter, heavy cream, mayonnaise, sugar, honey, eggs and cheese etc. are primarily used. Enrichment powders from pharmacies may also be used. Some powders are nutritionally complete, i.e. they contain everything the body requires in terms of energy and nutrients, while others only contain pure energy (carbohydrates, fat and/or protein). 

Tube feeding

Tube feeding is given continuously with a low drop rate or by interval/bolus administration (individually adapted meals with high drop rate).

When the patient's energy and fluid requirements are fulfilled, it will be decided whether the patient will be given bolus or continuous supply at night, in order to increase mobilization during the day. However, this requires that the patient does not have diarrhea, nausea or other complaints associated with the supply of nutrition.

For a running feeding tube:

  • Every 4-8 hours, it should be aspirated in order to monitor the gastric emptying. This applies especially to immobile and weak patients.
  • Weekly or more often, the nutrition program/fluid balance, evaluation, edema control, blood tests (albumin, K, Mg, P, blood glucose) should be monitored weekly or more often.
  • Every 4-6 weeks, the tube should be changed. Alternate the uses of nostrils avoid irritation in the nose through prolonged feeding.

Experience shows that the use of infusion pumps causes fewer side effects and ensures correct volume and rate.

Bolus supply

Initiation of tube feeding with bolus supply is only recommended

  • if the patient been taking any food until the last 24 hours
  • if the patient is taking some food and requires tube feeding for additional nourishment

It is recommended to use pumps for bolus supply for the first 1–2 days.

Continuous supply

If the patient cannot tolerate bolus supply (vomiting, abdominal discomfort, nausea, diarrhea), reverting to continuous supply should be considered.

Tube feeding should always be administered continuously to very malnourished patients or if the tube end is located distally to the pylorus.

Parenteral nutrition

If the patient has a satisfactory nourishment status, begin with 100% of the requirement. If the patient is seriously malnourished, start with 80 % of the requirement and increase slowly to 100% over the course of three days.

The patient must be monitored closely in relation to

  • electrolytes (potassium, phosphate and magnesium).
  • infusion rate.
  • twenty-four hour urine sample and fluid balance should be calculated daily.
  • glucose in the blood and urine, and electrolyte in the blood should be examined daily at the start.
  • liver tests, kidney function tests and triglycerides should be taken examined at least once every week.

For TPN treatment longer than 1 month, vitamins and trace elements should be examined.

Follow-up

The patient's nutrition status should be monitored at follow-up visits after the end of treatment.

Bone Marrow Stimulation with G-CSF

General

Bone marrow stimulation with G-CSF (Neupogen®, Granocyte®) is only recommended for febrile neutropenia which does not respond to antibiotic treatment, severe neutropenia (granulocytes < 0.5 x 109 /L for more than 1 week), and in cases where it is necessary to administer curative treatment with sufficient dosage intensity.

Indications 

  • To maintain dosage intensity for curative treatment; when a reduction in dosage will significantly reduce the chance of cure.
  • As prophylaxis for treatments associated with a high risk for febrile neutropenia (> 40 %)
  • Febrile neutropenia that does not respond quickly to antibiotic treatment
  • Long-lasting neutropenia

Goal

  • Maintain treatment intensity

Preparation

The patient should be adequately informed about the treatment.

Implementation

  • The dosage of Neupogen® is 5 µg/kg daily. The treatment is initiated, at the earliest, 48 hours after the treatment is completed. The treatment continues for 10 days.
  • The dosage of Neulasta® is 6 mg subcutaneously administered 24 hours after chemotherapy is completed. The neutrophil cells are counted on day 15.
  • The subsequent course is started on day 21, if the neutrophil count is 0.5 or higher, and the patient has not had febrile neutropenia.
  • It is important not to postpone the treatment if the neutrophil count is 0.5 or higher. The neutrophil count will compulsory decline after ending Neupogen® stimulation. Low values at the start of treatment should not be alarming if the values during hospitalization have been high enough to avoid febrile neutropenia.
  • Stimulation late in the cycle should only be performed for long-lasting, severe neutropenia. At least 48 hours should pass after completed stimulation treatment before the next chemotherapy course  is started. In these cases, it is always important to check that the doses are correct and to recalculate GFR etc. Continuation of chemotherapy will either require a drastic dosage reduction or secondary prophylaxis with G-CSF.

 

Follow-up Care

It is of utmost importance that the patient is informed of the risk of infections associated with a low neutrophil count.

Patients at risk for developing  very low values, must be  informed to take their temperature if they feel unwell or  febrile. In case of  a temperature above 38 °C they should contact their doctor immediately.

Transfusions

General

Transfusions of blood components are often necessary for the patient to complete the planned cancer treatment.

Blood transfusions are appropriate for low hemoglobin (Hb) and thrombocyte transfusions for low thrombocytes (trc) which also poses a risk for serious bleeding.

Normal values

  • Hemoglobin 13.4–17 g/dl
  • Platelets 145–348 109/l

Indications

Blood transfusion

Assessment for a blood transfusion based on:

  • Hb/hct
  • symptoms/sign/function level
  • underlying disease (heart/lung, serious infection)
  • expected development of anemia (marrow function, current bleeding)
  • acute blood loss > 15% of total blood volume
  • Hb < 8.0 g/dl and symptom causing chronic anemia
  • Hb < 8.0 g/dl and reduced bone marrow production without sign of regeneration
  • Hb < 8.0 g/dl in perioperative period
  • Hb < 7.0 g/dl in patients without symptoms of other disease
  • Hb < 10.0 and receiving radiation therapy

Platelet transfusion

The patient is assessed for thrombocyte transfusion based on:

  • clinical status (bleeding, bleeding tendency, or fever/infection)
  • ongoing bleeding and thrombocytopenia < 50x19/l
  • degree of thrombocytopenia and cause of thrombocytopenia (reduced production or increased consumption)

Prophylactic platelet transfusion

  • For values < 10x109/l secondary to previous chemotherapy
  • Before invasive procedures
  • For spinal puncture and installation of central vein catheter, thrombocytes should be 30x109/l and 
  • Puncture biopsies (liver/kidney/tumor) > 40x109/l
  • For major surgeries, thrombocytes should be > 50x109/l. After surgery, thrombocytes should be monitored and transfusion repeated, if necessary.

Remember clinical evaluations: possible bleeding, other risk factors for bleeding, diagnosis, treatment, prognosis.

Goal

  • Complete the planned treatment
  • Ensure hemostasis 
  • Ensure adequate oxygen transport to peripheral tissue.
  • Maintain intravascular fluid volume for adequate circulations of vital organs

Definitions

Blood

For a blood transfusion for anemia, SAGMAN erythrocytes are used. One unit is obtained from 450 ml blood. Most of the plasma is removed and replaced with 100 ml SAGMAN solution (Saltwater-Adenine-Glucose-Mannitol). Hematocrit is about 0.60%.

Platelets

One unit contains 240-300 x 109 platelets and is prepared from blood donors with type O and A. In acute situations, the receiver's blood group is of minor importance.
Two kinds of platelet products are available:
  • Apheresis platelets produced from thrombophereses from one donor
  • Buffcoat platelets produced from buffy coat from 4 donors

All cellular blood products should be leukocyte filtered. Leukocyte filtration is done to remove antigen-presenting and virus-bearing cells. 99.99% of leukocytes in the unit are removed.

Radiation

Blood and thrombocytes are irradiated to a minimum of 25 Gy in the blood bank to eliminate T-lymphocytes.

This is done for:

  • Bone marrow transplant or stem cell transplant (1 month before or 3 months after HMAS until 1 year after allogeneic stem cell transplant)
  • For use of HLA-compatible platelet concentrations
  • For all transfusions from relatives
  • For use of fresh blood
  • For use of fludarabine

Preparation

Blood tests

Before the first blood transfusion, the following blood tests are performed:
  • Virus antigens
    • HCV
    • HBV
    • HIV
Every three days, and as needed, pre-transfusion tests are taken.

Compatibility

Erythrocyte concentration—Rh(D) negative products can usually be given to everyone while Rh(D) positive can only be given to Rh(D) positive receivers.

Thrombocyte concentration—Rh(D) negative girls and women in fertile ages who obtain Rh(D) positive thrombocyte products should be given a prophylaxis for Rh immunization. Boys/men and women who are over the fertile age may obtain thrombocytes regardless of Rh(D) type.

Implementation

Blood components should never be given together with other medications.
  • Premedication if the patient has reacted to previous transfusions.
  • Secure venous access
  • The blood product is checked to ensure the correct unit is given to the correct patient.
  • Use blood set with filter
  • Give SAGMAN over 1 hour and thrombocytes 20-30 minutes per unit.
  • Rinse the set with NaCl 9 mg/ml at the end of the infusion
  • Store the blood product bag for one day before discarding

Observations

The patient should be observed during the transfusion with emphasis on reactions. Most serious transfusion reactions occur within the first 20 minutes.

Symptoms of transfusion reaction:
  • chills
  • fever
  • feeling of heat in the face
  • breathing difficulty
  • itching
  • nervousness
  • fall in blood pressure
  • shock
Suspect/manifest blood transfusion reaction:
  • Stop transfusion immediately
  • Start treatment if necessary (intravenous fluid, adrenalin, steroids, oxygen, respirator)
  • Check blood bag and compatibility form. The residue should be sent to the blood bank.

Follow-up

Hemoglobin and thrombocytes are checked.

If poor effect of platelet transfusion, platelet value should be checked after approximately one hour. The value should have increased by approximately 30x109/l or more after a standard dose.

If the increase is drastically less, the cause may be:
  • Abnormally high consumption. This is an indication for more frequent transfusions.
  • Antigens against HLA or platelet-specific antigens. The patient must be examined in cooperation with the blood bank to find compatible donors.

Febrile Neutropenia

General

Febrile neutropenia occurs in compromised immune systems due to a low number of leukocytes, especially granulocytes. Patients with a declining number of granulocytes after chemotherapy, can during bacterial sepsis, quickly develop extensive neutropenia and become critically ill. Febrile neutropenia can be a life-threatening condition.

A patient with neutropenia and simultaneous fever or clinical suspicion of systemic infection should be treated as quickly as possible with broad spectrum antibiotics including gram-negative and gram-positive coverage as soon as the required microbiological samples are taken.

The clinical situation is most critical in patients who have not yet started antibiotic treatment. When broad-spectrum antibiotic treatment is started, monitoring the fever may be permitted.

Fever is often the only symptom. Some have septicemia without fever. One should therefore also be aware of other symptoms such as lethargia, diarrhea, or visible sign of infection. The local clinical symptoms and signs (redness, pain, temperature increase, swelling (boil), and reduced organ function) are most often very much reduced or completely absent during neutropenia.

Indications

  • A patient with neutropenia and simultaneously fever or clinical suspicion of systemic infection

Goals

  • Avoid septicemia.
  • The patient is able follow the planned scheme of treatment.

Definitions

Fever is defined as:

  • a single (rectal) temperature ≥ 38.5 °C or
  • temperature ≥ 38 °C for more than 2 hours or
  • temperature ≥ 38 °C measured three times during 24 hours

There is a known increase of infections when neutrophil < 1.0 x 109/l.  The infection risk increases with degree and duration of neutropenia. The neutropenia is considered severe when granulocytes are ≤ 0.5 x 109/l.

Preparation

The following diagnostic tests should be performed:

  • Adequate microbiologic tests: blood culture x 2-3, throat/nasopharynx, urine, catheter opening any surgical incisions. All blood cultures should be taken simultaneously to avoid losing valuable time.
  • Blood culture and other microbiological samples should be taken before antibiotic treatment is started
  • Blood tests with differential count of leukocytes, thrombocytes, Hb, CRP, SR, creatinine
  • X-ray of chest

Information

Before initiation of chemotherapy, the patient should be extensively informed, both verbally and in writing, of febrile neutropenia and  its consequences.

A patient who can develop febrile neutropenia should obtain a written statement of the condition to present to other treatment providers.

Use of an isolated or private room

Patients with neutrophil granulocytes ≤ 0.3 x 109/l should have a private room if possible. Guidelines for protective isolation should be followed. Thorough washing of hands is especially important.

 

Implementation

  • Treatment is started as soon as possible.  Treatment may be postponed a maximum of 30 minutes to complete microbiological testing.
  • Start septicemia treatment for fever if neutropenia is expected, regardless of granulocyte value.

Antibiotic regimen

  • Benzylpenicillin sodium 5 mg IE x 4 tobramycin or gentamicin 5-10 mg/kg x1
  • Tazocin® 4 g x 3
  • Cefotaxime® 1 g x 4 if aminoglycoside should be avoided
  • Ceftazidim® 1 g x 4  with suspicion of pseudomonas infection
  • Meronem ® 0.5 g x 4 usually 2nd or 3rd choice

When using aminoglycoside, the first dose should be high. Keep in mind the following:

  • age
  • sex
  • kidney function
  • fat index   

Otherwise, the dose should be decided from concentration of aminoglycoside determined after the second day and thereafter monitored 2x per week. 

Serum concentration of tobramycin and gentamycin

For single dose in 24 hours

  • Trough concentration (0-test = 24 hour test) < 0.5 mg/l
  • Top concentration (30 minute after infusion is completed) > 12 mg/l

For multiple doses in 24 hours

  • Trough concentration < 2 mg/l, top concentration (30 minutes after the infusion is completed) preferably > 8-10 mg/l 
  • Avoid aminoglycoside :
    • If kidney function is reduced. Avoid aminoglycoside if cisplatin is used. If cisplatin has been previously used, many patients will have subclinically reduced kidney function. If necessary, use aminoglycoside for a short period and monitor kidney function closely.
    • If carboplatin is used, determine glomerulus filtration rate (GFR) for each new treatment. Penicillin/aminoglycoside can be used if GFR is stable (has not declined more than 15% if initial value is in the normal range)
    • With sarcoma: Protocols with very high doses methotrexate and ifosfamid (> 5 g/m2) should be used in sarcoma treatment. It is not abnormal for these patients to have an increase in creatinine.
    • with massive ascites
    • with suspicion of or documented myeloma kidney (myelomatosis)
    • If aminoglycoside has been used in the past two weeks
  • Suspicion of staphylococcus aureus as a cause of infection (relatively rare)
    • Give penicillinase-stable penicillin, cloxacillin, or dicloxacillin, possibly clindamycin instead of ordinary penicillin. Yellow staphylococci are also killed by cefotaxime and by merop
  • Gram-positive cocci in multiple blood cultures and if the patient has clinical signs of infection
    • Use vancomycin 500 mg x 4 until resistance determination is available
  • Poor patient condition and suspicion of gram-negative septicaemia
    • Use “double gram-negative” with for example ceftazidim or tobramycin
    • Other preparations with good effects against most gram-negative bacteria are meropenem and ciprofloxacin
  • Suspicion of anaerobic infection
    • Use an anaerobic drug: Metronidazol 500 mg x 3, clindamycin 600 mg x 4, piperacillin/tazobactam 2g x 4 or meronem 500 mg x 4.  This especially applies if there is suspicion of anaerobic infection under the diaphragm such as gallbladder, intestines, perforation, abscess.
    • penicillin is often adequate for anaerobic infections above the diaphragm.

With continuing clinical signs of infection, adjust the antibiotic treatment according to resistance determination in blood culture. Maintain gram-negative coverage.

Systemic fungal treatment

By persistent fever after multiple days with broad spectrum antibiotic treatment, one should consider empirical treatment of possible candida-sepsis, for example with fluconazole 600 mg the first 24 hours, and thereafter 400 mg x 1.

If candida is documented without adequate response to fluconazole, a fungicide drug should be used, for example amphotericin B.

If suspected infection with Aspergillus apply voriconazole, amphotericin B or caspofungin.

Follow-up

Observe for symptoms of a new infection.

Intravenous Extravasation of Cytotoxic Drugs

General

Intravenous extravasation occurs when there is an accidental leak of intravenous cytotoxic fluid (chemotherapy drug) from the vein to surrounding tissue.  

If chemotherapy is given in a peripheral vein, a large vein should be used, which is preferably in the underarm. Before the infusion begins, the vein should be checked for leaks by injecting NaCl 9 mg/ml or glucose 50 mg/ml. Backflow should also be checked. The patient must be informed that pain or burning in the area is not normal and they must inform the doctor.

Cytotoxic chemotherapy drugs should always be given through a central vein catheter to reduce the risk of intravenous extravasation.

Risk factors for intravenous extravasation:

  • Small veins (infants and children)
  • Brittle veins (elderly patients)
  • Reduced physical health (cancer patients)
  • Sclerosizing veins
  • Rolling veins
  • Poor circulation (if the needle is placed in an arm with edema)
  • Obstructed vena cava (raised venous pressure may cause leakage)
  • Conditions such as diabetes and radiation damage
  • Obesity

Chemotherapeutic drugs are separated into three groups according to the degree of toxicity:

  • Non-cytotoxic/irritating
  • Tissue irritant
  • Cytotoxic

Cytotoxic drugs can cause blisters or ulcerations leading to skin necrosis if extravasation occurs. If intravenous extravasation is left untreated, it can lead to permanent tissue damage, necrosis, scar formation around ligaments, nerves and joints, infections, abscesses, contractures, and in the worst case, amputation.

Indication

  • Intravenous extravasation of cytotoxic drugs. 

Goal

  • Limit damage of tissue from intravenous extravasation.

Definitions

Non-cytotoxic drugs or non-irritants

Non-cytotoxic/non-irritant drugs normally do not cause skin necrosis.

Irritants

Drugs that are tissue irritants can cause pain in and around the injection site and along the vein. They can also cause inflammation. Some tissue irritating drugs cause ulceration if a large amount leak extravasally.

Cytotoxic drugs

Cytotoxic drugs are categorized into subgroups according to the mode of damage. This categorization is important for the choice of treatment.

DNA-binding

DNA binders absorb locally into the cells, bind to DNA, and cause cell death. After cell death, the drug molecule can be liberated from the dead cell and start killing healthy cells. This group is divided into these subgroups:  

  • Anthracycline
  • Alkylating drugs
  • Other

For doxorubicin and mitomycin, progrediating tissue damage has been reported over weeks, and in some cases, months after intravenous extravasal injection.

Non DNA-binding

This group of medications can lead to cell death through other mechanisms than DNA binding drugs. This group is divided into:

  • Vinca alkaloids
  • Taxanes

 

Chemotherapy cytotoxicity (1)
Cytotoxic, necrosis

Irritant, can cause flaking or inflammation

Non-cytotoxic or non-irritant
Amsacrine Cisplatin Aldesleukin
Decarbazine Doxorubicin liposomal Alemtuzumab
Dactinomycin Estramustine** Asparaginase
Docetaxel**** Etoposide Bleomycin
Doxorubicin* Floxuridine Bevacizumab
Epirubicin* Florouracil Bortezomib
Daunorubicin* Irinotecan Cetuximab
Idarubicin* Carboplatin Cyclophosphamide**
Irinotecan Carmustin** Cytarabine
Kloremtin** Oxaliplatin Fludarabine
Mitoguazon Pemetrexed Gemcitabine
Mitomycin-C Ralitrexed Ibritumomab tiuxetan
Mitoxanthrone Temoporfin Ifosfamide**
Paclitaxel**** Teniposide Interferon
Plicamycin Topotecan Cladribine
Streptozocin Methylene blue***** Clofarabine
Verteporphin   Melfalan**
Vinblastine***   Methotrexate
Vindesine***   Rituximab 
Vincristine***   Tiotepa**
Vinorelbine***   Trastuzumab

 * = Anthracycline

** = Alkylating agents

*** = Vinca alkaloids

**** = Taxanes

*****= Methylene blue is not a chemotherapy drug, but is used for ifosfamide-induced encephalopathy, and is therefore included on the list.  

All chemotherapy drugs can damage tissue in high concentrations.

References

 

  1. Allwood M, Stanley A WP. The Cytotoxics Handbook. Ed. 4th ed. 2002. 2001
  2. Ekstravasation Guidelines Implementeringsværktøj [Online] 2007 [hentet 10. mars 2009]; Tilgjengelig fra URL: http://www.cancerworld.org/CancerWorld/getStaticModFile.aspx?id=2726

Preparation

Identification of an extravasal injection

  • A burning, stinging pain or other acute change of the puncture site.
  • Local redness or inflammation of the skin around the puncture site.
  • The infusion rate slows/stops.
  • Swelling of the puncture site.

Extravasation has probably also occurred if blood cannot be aspirated, resistance is felt on the plunger when a syringe is used, and/or there is no current if the drug is infused. 

 

Implementation

Flow chart for treatment of intravenous extravasation of cytotoxic drugs:

Emergency response:

  • Stop the infusion immediately.
  • Allow the needle to remain and aspirate with as much water as possible. Avoid applying direct pressure on the area of extravasation.  
  • The volume, type, and time of extravasation should be recorded.
  • A doctor/plastic surgeon should be called for to examine the patient.
  • The damaged area and skin manifestations should be marked/photographed.
  • The affected area should be kept elevated.
  • The remaining chemotherapy should not be discarded.
  • The patient should be informed about what is happening and what must be done. 
  • The needle is removed while aspirating.
  • Pain medication is administered if necessary.

Based on which medication has leaked extravasally, the doctor or plastic surgeon will decide whether conservative treatment or primary surgery is necessary.

Conservative treatment

Conservative treatment consists of two different treatment strategies to limit the damage by extravasation: localize/neutralize and spread/dilute (2).

Localize and neutralize:

  • Place an ice pack on the area for 15-20 minutes, at least 4 times daily for multiple days. A coldpack is used to limit spreading of the drug. Studies have indicated that there is reduced cellular uptake of drugs at lower temperatures (2).
  • The drug that has leaked extravasally is neutralized by a specific drug if the instructions are followed.
  • The affected area of the body should be kept elevated.

Spread and dilute (applies to vincristine, vinorelbine, vindesine, and vinblastine):

  • Warm compresses are placed on the area for 15–20 minutes, at least 4 times daily, for multiple days.
  • To dilute the drug that has leaked extravasally, many subcutaneous injections are given with hyaluronidase diluted with sterile water.

If the patient has lasting pain or blisters, surgical treatment should be considered by excising the area with direct sutures, skin transplant, or flap reconstruction.

Another type of reconstruction may be necessary at a later time. 

Treatment 

Dexrazoxan (Savene®)

Dexrazoxan is an EDTA analong used to treat extravasation of anthracycline (doxorubicin, daunorubicin, epirubicin, idarubicin). The mechanism of action is not fully understood, but it is believed that it may work through two mechanisms. By chelating iron, the formation of the iron-doxorubicin complex and  iron-mediated hydroxy radicals are hindered, which cause oxidative damage to cell membranes and proteins. Another possible mechanism is inhibition of topoisomerase II (3).

Treatment lasts for 3 days. In all cases of extravasation of anthracycline, this treatment should be assessed by an oncologist and surgeon/plastic surgeon.

  • The first infusion should start as soon as possible and within 6 hours after extravasation. 
  • On the following two days, the infusions should occur at the same time as the previous infusion (+/- 3 hours).
  • If possible, the infusion should be placed in a vein where there is no extravasation.
  • An ice pack or cooling element used on the area must be removed at least 15 minutes before the infusion starts to ensure sufficient blood circulation.

Cost

A package costs about NOK 100,000.-. If the expiration date runs out, the drug is replaced by the pharmaceutical company free of cost.

Dimethylsulfoxide (DMSO)

DMSO (70–90% solution) quenches free radicals and prevents formation of sores. The solution can be used after extravasation of cytotoxic drugs (anthracycline, mitomycin C, doxorubicin, idarubicin, epirubicin andactinomycin D) together with cooling of the area when other treatment methods cannot be used (5, 6). DMSO cannot be used in combination with dexrazoxan (3, 4).

  • An area twice as big as the affixed area is treated with the solution every 8 hours for one week.(6)

Hyaluronidase

Hyaluronidase is an enzyme that breaks down hyaluronic acid found in connective tissue. This leads to permeability and increased diffusion of the drug that is leaking extravasally, and is used only to spread the drug out into the tissue (spread and dilute).  

  • Hyaluronidase is administered subcutaneously or intradermally in 5-10 locations on the border of the area where the drug has leaked extravasally (7).

Surgical treatment

"Wash-out"

The washing out technique can be used with chemotherapy drugs when tissue damage is likely. When used with anthracycline, it is important that this is performed before the chemotherapy drug goes intracellularly.

In most cases, this is a very successful method if it is performed within 6 hours after the extravasation.

  • The patient receives regional anesthesia.
  • Multiple small incisions must be made to ensure sifficient access to the damaged subcutaneous tissue.
  • With an infiltration needle, which is usually used for liposuction, isotonic NaCl is flushed through the tissue and drains through the incisions.
  • The infiltrated fluid is then carefully removed by suction through a small needle used for liposuction.
  • The procedure is repeated until 300-500 ml fluid is used.

References

  1. Ekstravasation Guidelines Implementeringsværktøj [Online] 2007 [hentet 10. mars 2009]; Tilgjengelig fra URL: http://www.cancerworld.org/CancerWorld/getStaticModFile.aspx?id=2726
  2. Hasinoff BB. Dexrazoxane use in the prevention of anthracycline extravasation injury. Future Oncol 2008; 2006: 1–15.
  3. Statens legemiddelverk. Preparatomtale. 2008
  4. Langstein HN, Duman H, Seeling D, Butler CF, Evens GR. Retrospective study of the management of chemotherapeutic extravasation injury. Ann Plastic Surg 2002; 49: 369–74. 
  5. Bertelli G, Gozza A, Forno GB, Vidili MG, Silvestro S, Venturini M et al. Topical dimethylsulfoxide for the prevention of soft tissue injury after extravasation of vesicant cytotoxic drugs: A prospective clinical study. J Clin Oncol 1995; 13: 2851–5.
  6. Clinical Pharmacology© 2008 database. Hyaluronidase. 2008.

Follow-Up

For conservative treatment 

The damaged tissue should be observed for multiple weeks (with mitomycin at least 13 weeks) since necrosis can occur after months.

For emergency surgical treatment

Patients treated by a plastic surgeon should receive follow-up care by the surgeon until the wound has healed.

 

Intravenous extravasation of cytotoxic drugs.Intravenous extravasation of cytotoxic drugs.Extravasation of tissue toxic chemotherapy

Smoking cessation in connection with cancer treatment

General

In patients treated with surgery, radiation and/or chemotherapy, the treatment efficacy may be affected by smoking. Smoking has an impact on both metabolism and pharmacokinetics.

Smoking may inhibit wound healing after surgery and increase the probability of surgical site infections. Because smokers generally have more mucus in the airways and are less able to remove it, they also may have a increased risk of serious lung complications during anesthesia. However, it is disputed whether or not it is beneficial to quit smoking directly prior to surgery and this should be considered in each case individually. (28,30-33). Smokers are more prone to stagnation of bronchial secretion than non-smokers and rapid postoperative extubation is important. 

Patients who continue smoking during radiation therapy have a lower risk of complete respons, development of secondary cancer, increased toxicity and several other side effects compared to non-smokers and smokers that quit before treatment. Continued smoking during radiation therapy is also associated with oral mucositis, impaired ability to taste, dry mouth, reduced voice quality, weight loss, cachexia, fatigue, pneumonia, bone-and soft tissue necrosis.

Tobacco may have an effect the metabolism and the mechanisms of chemotherapy and in this way may make the treatment less effective. Smokers undergoing chemotherapy may also experience a weakened immune system, increased rates of infection, exacerbation of common side effects, weight loss, cachexia, fatigue and cardiac or pulmonary toxicity. Some findings suggest that it may also apply to monoclonal antibodies.

Cancer patients who quit smoking before chemo- and radiation therapy get a total symptom burden equal to that of non-smokers, but those who continue to smoke state a higher symptom burden. Targeted measures in smoking cessation may increase quality of life and lead to less treatment interruptions.

A lot of patients wonder if there is any point to quit smoking after receiving a cancer diagnosis. tudies show that continued smoking is associated with increased treatment-related toxicity, increased risk of second primary cancers, reduced quality of life, reduced treatment effect and reduced survival in patients with cancer. This applies to both cancer diagnoses where smoking is a known causal factor, as with lung- and head and neck cancers and in cases where smoking has no known correlation with the diagnosis. Studies conducted on smoking and cancer diagnoses such as breast cancer, prostate cancer, colorectal cancer, esophageal cancer, cervical and ovarian cancer as well as leukemia and lymphoma cancers show that to continuation of smoking after a proven cancer diagnosis is associated with increased risk of mortality.

Studies support that quitting smoking improves cancer, and emphasizing the potential importance of targeted smoking cessation in cancerpatients during and after treatment. The link between tobacco and impact on cancer and cancer treatment is a complex matter.

Regarding the significance of the various components much is still unkown. When it comes to tobacco use in cancer treatment research is primarily done on the link between cigarette smoking and efficacy of cancer treatment. Nevertheless, it cannot be excluded that using other smokeless tobacco products such as snuff and chewing tobacco, may also impact the cancer treatment. According to international guidelines all tobacco use should be stopped during cancer treatment.


Benefits of smoking cessation and risks of continued smoking in patients with cancer
Quitting smoking results in the following benefits: Continued smoking results in a risk of :
  • improved treatment results.
  • less side effects
  • fewer infections
  • improved respiration and circulation
  • increased survival
  • reduced efficacy of treatment.
  • postoperative complications and longer recovery.
  • cardiovascular and respiratory complications.
  • recurrence of cancer, and secondary cancer.
  • shortened life expectancy.

 

Indication

Weaning of nicotine in connection to cancer treatment. 

Goal

Healthcare providers should convey evidence-based information to patients about how smoking affects cancer treatment, the risk of side effects and prognosis and also provide guidance and relevant treatment for smoking cessation.

Preparation

Patients require clear, formalized and fact-based guidance and continuous follow-up. Many patients want encouragement for smoking cessation early in the disease. Being hospitalized is a good opportunity because patients have access to support and help to reduce nicotine withdrawal symptoms and discomfort.

A patient recently diagnosed with cancer is often motivated to quit smoking and also receptive to conversations about how to do this. Motivation or willingness to quit often changes during the treatment, and use of tobacco and motivation should therefore be discussed at every consultation.

Clarifying the patient´s smoking habit is important. The time of day the patient lights their first cigarette says something about the degree of addiction. Making the patient aware of the situations in which he or she smokes most; at work, at home or in social settings, can help break unwanted patterns of behavior.

Implementation

The best and most direct approach to motivate the patient is telling that tobacco use will decrease the effectiveness of treatment and the most important thing the patient can do himself is to stop using tobacco.

  • Speak directly to the patient about how tobacco use may decrease the effectiveness of treatment.
  • Discuss smoking cessation with the patient at each visit.
  • Clarify any misunderstandings about the risks of tobacco use. Point out the importance of quitting.

Sometimes there may be misunderstandings about what kind of health risk smoking during and after cancer treatment may entail.

Advice to those who are not ready for smoking cessation
The smokers statement The response of health care professionals
Justifications
The damage from smoking is already done.
Some damage is done, but continued smoking will still damage your health and reduce the effects of treatment. Quitting smoking is more important now than ever.
This response tells the patient that it is not too late to quit smoking, and the effect of treatment will be positive.

I have reduced smoking.
That is great, and now you need to focus on quitting completely. What do you think keeps you from quitting altogether?
This response tells the patient the importance of quitting completely, as the benefits of quitting at baseline are documented.
This is not a good time to quit smoking.
The benefits of quitting are greatest now, before treatment begins. What is needed to make you feel ready to quit smoking?
 
This response make the patient aware of the fact that quitting smoking optimizes the cancer treatment.

Health professionals must assist the patient identifying realistic expectations and goals for smoking cessation. For some, it may feel easier to scale down the number of cigarettes than to quit completely. The patient should know that every puff affects their health, and that the total health benefits can only be achieved through smoking cessation. For patients unable to stop completely, a gradual reduction may be a step in the right direction.

The probability of success for smoking cessation significantly increases for those who receive professional help in combination with nicotine replacement therapy (NRT) or non-nicotine based products. For the best possible effect of NRT the patient needs professional guidance to find the right product and dosage. For some patients combining two products or receiving a higher dosage than recommended will give the best effect. Sometimes the product must be replaced during the treatment.

Treatment with nicotine replacement therapy

Topical products are patches (Nicorette®, Nicotinell®), chewing gum (Nicorette®, Nicotinell®), lozenges (Nicorette®, Nicotinell®), inhalator (Nicorette®) or a combination of these. These products contain nicotine and therefore reduce the withdrawal symptoms experienced after smoking cessation.

  • Patch: Nicorette® 5 mg,10 mg and 15 mg/16 hours up to 6 months or Nicotinell® 7 mg,14 mg og 21 mg/24 hours up to 3 months.
  • Chewing gum: Nicorette®/Nicotinell® 2 mg and 4 mg, 8-12 pcs/day up to 12 months.
  • Lozenges: Nicorette® 2 mg and 4 mg, typically 8-12 pcs/day, maximum respectively 15 pcs/day up to 9 months or Nicotinell® 1 mg and 2 mg, typically 8-12 pcs/day, maximum is respectively
    25 and 15 pcs/day up to 12 months.
  • Inhalator: Nicorette® 10 mg/dosage container, 4-12 pcs/day up to 6 months.

Combination therapy means combining patches with chewing gum, lozenges or an inhalator.

  • Nicorette® patch15 mg/16h and Nicorette chewing gum 2 mg. 5-6 chewing gums daily. Maximum 24 pcs/day
  • Nicorette® patch 15 mg/16h and Nicorette® inhalator 10 mg: 4-5 dosage-container daily. Maximum 8 pcs/day

Nicotine replacement therapy increases the chance of smoking cessation by 50 to 70% after six months. Two products used in combination increase the chance of smoking cessation compared to the use of only one product.

Side effects

  • Headache, dizziness, nausea, flatulence and hiccup.
  • Irritation in the mouth and esophagus using chewing gum/ lozenges/inhalator
  • Skin irritations while using patches.

Precautions

  • Precaution in acute cardiovascular disease, peripheral arterial disease, cerebrovascular disease, hyperthyroidism, diabetes mellitus, kidney- and liver failure and peptic ulcers.
  • Should not be used during pregnancy, unless the potential benefit outweighs the potential risk.
  • The products should not be used during breastfeeding.

Treatment with non-nicotine medications

Bupropion (Zyban®) is a selective reuptake inhibitor of dopamine and norepinephrine. The mechanism behind why the ability to refrain from smoking increases by using bupropin is unknown. A should be set for smoking cessation for the second week of treatment.

Bupropion increases the chance of smoking cessation after 6 months by nearly 70%.

Side effects

  • Dry mouth, nausea, insomnia, hypersensitivity reactions and seizures (convulsions)

Precautions

  • Contraindicated in people with disease that can cause convulsions,  people with substance abuse or other circumstances lowering the seizure threshold.
  • Depression, which in rare cases includes suicidal thoughts and – behavior including  suicide attempt.
  • Safety and efficacy have not been established for people under 18 years.
  • Should not be used during pregnancy.

Varenicline (Champix®) is a partial agonist by a subtype of nicotinic receptors. It has both agonistic activity with lower intrinsic efficacy than nicotine and antagonistic activity in the presence of nicotine.

A date for smoking cessation should be set. Treatment should start 1-2 weeks, or up to 35 days, before that date. The starting dose is 0,5 mg one time daily on days 1-3, then 0,5 mg two times daily on days 4-7, then 1 mg two times daily on day 8 and until the end of treatment. The treatment should last for 12 weeks.

Side effects

  • Nausea, sleep disturbances, headache, constipation, flatulence and vomiting

Precations

  • Links have been reported between the use of varenicline and an increased risk of cardiovascular events, suicidal thoughts, depression and aggressive and erratic behavior
  • Safety and efficacy have not been established for people under 18 years of age
  • Should not be used during pregnancy

Follow-up

If the patient experiences a relapse, it is important to inform them that this is completely normal, and encourage them to continue. If the most common measures do not work,
consideration should be given both to increase the NRP and to provide closer follow-up by health care providers.

Guidance in smoking cessation is described in the literature as brief and clear advice and then further follow-up with a telephone helpline offering treatment for addiction and behavior change/issues. It is not necessary for the patient to have decided to quit smoking in order to be referred to a quitline. If the patient agrees to receive a call from quitline, he or she will be followed up by a supervisor. Supervisors are bound by confidentiality, are up-to-date professionally and offer free follow-up counseling calls for up to a year.

References

  1. Gritz E, Fingeret M, Vidrine D. Tobacco control in the oncology setting. American Society of Clinical Oncology, eds Cancer Prevention An ASCO Curriculum Alexandria, VA: American Society of Clinical Oncology. 2007.
  2. ASCO ASoCO. Tobacco Cessation Guide for Oncology providers,. 2012 (02.12.2014).
  3. Zevallos JP, Mallen MJ, Lam CY, Karam-Hage M, Blalock J, Wetter DW, et al. Complications of radiotherapy in laryngopharyngeal cancer: Effects of a prospective smoking cessation program. Cancer. 2009;115(19):4636-44.
  4. Obedian E, Fischer DB, Haffty BG. Second malignancies after treatment of early-stage breast cancer: Lumpectomy and radiation therapy versus mastectomy. Journal of Clinical Oncology. 2000;18(12):2406-12.
  5. Park SM, Lim MK, Jung KW, Shin SA, Yoo K-Y, Yun YH, et al. Prediagnosis smoking, obesity, insulin resistance, and second primary cancer risk in male cancer survivors: National Health Insurance Corporation Study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2007;25(30):4835.
  6. Van Den Belt-Dusebout AW, De Wit R, Gietema JA, Horenblas S, Louwman MWJ, Ribot JG, et al. Treatment-specific risks of second malignancies and cardiovascular disease in 5-year survivors of testicular cancer. Journal of Clinical Oncology. 2007;25(28):4370-8.
  7. Warren GW, Kasza KA, Reid ME, Cummings KM, Marshall JR. Smoking at diagnosis and survival in cancer patients. International Journal of Cancer. 2013;132(2):401-10.
  8. Hooning MJ, Botma A, Aleman BMP, Baaijens MHA, Bartelink H, Klijn JGM, et al. Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. Journal of the National Cancer Institute. 2007;99(5):365-75.
  9. Li CI, Daling JR, Porter PL, Tang M-TC, Malone KE. Relationship between potentially modifiable lifestyle factors and risk of second primary contralateral breast cancer among women diagnosed with estrogen receptor–positive invasive breast cancer. Journal of Clinical Oncology. 2009;27(32):5312-8.
  10. Kenfield SA, Stampfer MJ, Chan JM, Giovannucci E. Smoking and prostate cancer survival and recurrence. JAMA - Journal of the American Medical Association. 2011;305(24):2548-55.
  11. Joshu CE, Mondul AM, Meinhold CL, Humphreys EB, Han M, Walsh PC, et al. Cigarette smoking and prostate cancer recurrence after prostatectomy. Journal of the National Cancer Institute. 2011;103(10):835-8.
  12. Phipps AI, Baron J, Newcomb PA. Prediagnostic smoking history, alcohol consumption, and colorectal cancer survival: The Seattle Colon Cancer Family Registry. Cancer. 2011;117(21):4948-57.
  13. Kountourakis P, Correa AM, Hofstetter WL, Lee JH, Bhutani MS, Rice DC, et al. Combined modality therapy of cT2N0M0 esophageal cancer. Cancer. 2011;117(5):925-30.
  14. Waggoner SE, Darcy KM, Fuhrman B, Parham G, Lucci J, Monk BJ, et al. Association between cigarette smoking and prognosis in locally advanced cervical carcinoma treated with chemoradiation: A Gynecologic Oncology Group study. Gynecol Oncol. 2006;103(3):853-8.
  15. Schlumbrecht MP, Sun CC, Wong KN, Broaddus RR, Gershenson DM, Bodurka DC. Clinicodemographic factors influencing outcomes in patients with low-grade serous ovarian carcinoma. 2011. p. 3741-9.
  16. Nagle CM, Bain CJ, Webb PM. Cigarette smoking and survival after ovarian cancer diagnosis. Cancer Epidemiol Biomarkers Prev. 2006;15(12):2557-60.
  17. Ehlers SL, Gastineau DA, Patten CA, Decker PA, Rausch SM, Cerhan JR, et al. The impact of smoking on outcomes among patients undergoing hematopoietic SCT for the treatment of acute leukemia. Bone Marrow Transplant. 2011;46(2):285-90.
  18. Talamini R, Polesel J, Spina M, Chimienti E, Serraino D, Zucchetto A, et al. The impact of tobacco smoking and alcohol drinking on survival of patients with non-Hodgkin lymphoma. International Journal of Cancer. 2008;122(7):1624-9.
  19. Toll B, Brandon T, Gritz E, Warren G, Herbst R. AACR Subcommittee on Tobacco and Cancer. Assessing tobacco use by cancer patients and facilitating cessation: an American Association for Cancer Research policy statement. Clin Cancer Res. 2013;19:1941-8.
  20. Arntzen A, Sandvold B. Hvordan veilede om røykeslutt? Sykepleien Forskning. 2010;5(3):182-90.
  21. Dresler CM. Is it more important to quit smoking than which chemotherapy is used? 2003. p. 119-24.
  22. Hsu CCT, Kwan GNC, Chawla A, Mitina N, Christie D. Smoking habits of radiotherapy patients: Did the diagnosis of cancer make an impact and is there an opportunity to intervene? J Med Imag Radiat Oncol. 2011;55(5):526-31.
  23. Richards J. Words as Therapy: Smoking Cessation. The journal of family practice. 1992;34(6):687-92.
  24. Cooley ME, Lundin R, Murray L. Smoking cessation interventions in cancer care: opportunities for oncology nurses and nurse scientists. Annual review of nursing research. 2009;27:243.
  25. Mazza R, Lina M, Boffi R, Invernizzi G, De Marco C, Pierotti M. Taking care of smoker cancer patients: a review and some recommendations. Annals of Oncology. 2010;21(7):1404-9.
  26. Waller LL, Weaver KE, Petty WJ, Miller AA. Effects of continued tobacco use during treatment of lung cancer. 2010. p. 1569-75.
  27. Peppone LJ, Mustian KM, Morrow GR, Dozier AM, Ossip DJ, Janelsins MC, et al. The Effect of Cigarette Smoking on Cancer Treatment-Related Side Effects. Oncologist. 2011;16(12):1784-92.
  28. Kuri M, Nakagawa M, Tanaka H, Hasuo S, Kishi Y. Determination of the duration of preoperative smoking cessation to improve wound healing after head and neck surgery. Anesthesiology. 2005;102(5):892.
  29. Krueger JK, Rohrich RJ, Mustoe TA. Clearing the smoke: The scientific rationale for tobacco abstention with plastic surgery. 2001. p. 1074-5.
  30. Nakagawa M, Tanaka H, Tsukuma H, Kishi Y. Relationship between the duration of the preoperative smoke-free period and the incidence of postoperative pulmonary complications after pulmonary surgery. Chest. 2001;120(3):705-10.
  31. Barrera R, Shi W, Amar D, Thaler HT, Gabovich N, Bains MS, et al. Smoking and timing of cessation: Impact on pulmonary complications after thoracotomy. Chest. 2005;127(6):1977-83.
  32. Mason DP, Subramanian S, Nowicki ER, Grab JD, Murthy SC, Rice TW, et al. Impact of Smoking Cessation Before Resection of Lung Cancer: A Society of Thoracic Surgeons General Thoracic Surgery Database Study. Annals of Thoracic Surgery. 2009;88(2):362-71.
  33. Gajdos C, Hawn MT, Campagna EJ, Henderson WG, Singh JA, Houston T. Adverse Effects of Smoking on Postoperative Outcomes in Cancer Patients. Ann Surg Oncol. 2012;19(5):1430-8.
  34. Alsadius D, Hedelin M, Johansson KA, Pettersson N, Wilderang U, Lundstedt D, et al. Tobacco smoking and long-lasting symptoms from the bowel and the anal-sphincter region after radiotherapy for prostate cancer. Radiother Oncol. 2011;101(3):495-501.
  35. Chen AM, Chen LM, Vaughan A, Sreeraman R, Farwell DG, Luu Q, et al. Tobacco smoking during radiation therapy for head-and-neck cancer is associated with unfavorable outcome. International Journal of Radiation Oncology Biology Physics. 2011;79(2):414-9.
  36. Eifel PJ, Jhingran A, Bodurka DC, Levenback C, Thames H. Correlation of smoking history and other patient characteristics with major complications of pelvic radiation therapy for cervical cancer. Journal of Clinical Oncology. 2002;20(17):3651-7.
  37. Bjarnason GA, MacKenzie RG, Nabid A, Hodson ID, El-Sayed S, Grimard L, et al. Comparison of Toxicity Associated With Early Morning Versus Late Afternoon Radiotherapy in Patients With Head-and-Neck Cancer: A Prospective Randomized Trial of the National Cancer Institute of Canada Clinical Trials Group (HN3). International Journal of Radiation Oncology Biology Physics. 2009;73(1):166-72.
  38. Browman GP, Wong G, Hodson I, Sathya J, Russell R, McAlpine L, et al. Influence of Cigarette Smoking on the Efficacy of Radiation Therapy in Head and Neck Cancer. The New England Journal of Medicine. 1993;328(3):159-63.
  39. Browman GP, Mohide EA, Willan A, Hodson I, Wong G, Grimard L, et al. Association between smoking during radiotherapy and prognosis in head and neck cancer: A follow-up study. Head Neck-J Sci Spec Head Neck. 2002;24(12):1031-7.
  40. Travis LB, Gospodarowicz M, Curtis RE, Clarke EA, Andersson M, Glimelius B, et al. Lung cancer following chemotherapy and radiotherapy for Hodgkin's disease. Journal of the National Cancer Institute. 2002;94(3):182-92.
  41. Ford MB, Sigurdson AJ, Petrulis ES, Ng CS, Kemp B, Cooksley C, et al. Effects of smoking and radiotherapy on lung carcinoma in breast carcinoma survivors. Cancer. 2003;98(7):1457-64.
  42. Dresler CM, Gritz ER. Smoking, smoking cessation and the oncologist. 2001. p. 315-23.
  43. Balduyck B, Nia PS, Cogen A, Dockx Y, Lauwers P, Hendriks J, et al. The effect of smoking cessation on quality of life after lung cancer surgery. Eur J Cardiothorac Surg. 2011;40(6):1432-8.
  44. Hamilton M, Wolf JL, Rusk J, Beard SE, Clark GM, Witt K, et al. Effects of smoking on the pharmacokinetics of erlotinib. Clinical Cancer Research. 2006;12(7 I):2166-71.
  45. Helsedirektoratet. Forberedelse til røykeslutt 2011. Available from: http://helsedirektoratet.no/publikasjoner/forberedelser-til-roykeslutt/Publikasjoner/forberedelse-til-roeykeslutt.pdf   
  46. Brunnhuber K, Cummings KM, Feit S, Sherman S, Woodcock J. Putting evidence into practice: Smoking cessation: BMJ Publishing Group; 2007.
  47. Helsedirektoratet. Røyketelefonen 2013 [updated 12.12.201102.12.2014]. Available from: http://www.helsedirektoratet.no/folkehelse/tobakk/snus-og-roykeslutt/royketelefonen/Sider/default.aspx.
  48. Legemiddelverk S. Legemidler A-Å 2013 [02.12.2014]. Available from: http://www.legemiddelverket.no/Legemiddelsoek/Sider/Legemidler_A-AA.aspx.
  49. Hughes JR, Stead LF, Lancaster T, Rev CDS. Antidepressants for smoking cessation. Cochrane Database of Systematic Reviews: Reviews 2007. 2014 (1).
  50. Stead LF, Perera R, Bullen C, Mant D, Hartmann-Boyce J, Cahill K, et al. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev. 2012;11(11).
  51. Cahill K, Stead LF, Lancaster T, Polonio IB. Nicotine receptor partial agonists for smoking cessation. Sao Paulo Med J. 2012;130(5):346-7

Follow-up care after treatment of skin cancer (non-melanoma)

After the first check (6–8 weeks), certain patients will be checked regularly 2–3 times annually. These are patients who:

  • are immunosupressed after organ transplantation or other immunosuppressing treatment
  • have hereditary skin cancer 
  • have skin type 1–2 and have been exposed to a lifetime sun exposure
  • have been exposed to arsenic or other carcinogenic treatment as a child

Patients are encouraged to observe their skin and contact a doctor if any of the following occurs: 

  • skin changes
  • sores which bleed easily
  • lumps
  • pigment changes
  • sores which do not heal
  • red, scaly skin

Side Effects

Side effects depend on the extent of the disease and may include:

  • Skin
    • scarring
    • pigment changes 
    • tissue defects
  • Node Dissection
    • lymphedema
    • reduced function 
    • circulation disturbances

PROSEDYRER

Lymphedema

General

According to etiology, there are two general classifications of lymphedema primary and secondary lymphedema. Primary lymphedema is caused by deficient or faulty development of the lymph system. Secondary lymphedema occur as a complication from trauma or diseases which damage the lymphatic vessels or lymph nodes. The primary cause of lymphedema in the western world, is impaired or disrupted flow of lymph fluid caused by cancer or cancer treatment (secondary lymphedema).

Lymphedema occurs when the transport capacity of the lymph system is reduced significantly.
The swelling is caused by an accumulation of fluid (rich in protein) in the tissue, due to reduced drainage of lymph fluid (1,2). The swelling is often chronic. A lymphedema can lead to pain/discomfort and changes in the soft tissues in the affected area (fibrosis) (3,4). Lymphedema occurs most often during the first 2-3 years after cancer treatment (5 6). Without treatment, lymphedema can lead to progressive swelling.

In some cancer treatment the lymph nodes and fatty tissue are removed, most often in the axilla, pelvis and the groin. This treatment causes damage to the lymphatic wessels and reduces the number of lymph nodes. The subsequent reduced capacity for drainage of lymph fluid in the arm and leg may result in lymphedema.

Radiation therapy may cause tissue scarring and fibrosis. The combination of surgery and radiation therapy to the axilla additionally increases the risk of developing lymphedema.

Cancer related lymphedema can also occur due to metastasis in areas where blocking the central lymph vessels in advanced disease.

Factors which may increase the risk for developing lymphedema are:

  • obesity
  • infection in the area where lymphedema occurs
  • overheating/sunburn
  • trauma of the arm/leg on the operated side

Indications for treatment

Lymphedema in the arm/hand, breast, leg, groin, face and neck after treatment of:

  • breast cancer where axillary dissection is performed
  • gynecologic cancer where the lymph nodes in the pelvis or the groin are removed
  • melanoma where the lymph nodes in the axilla or the groin are removed
  • lymphoma and cancer of the head and neck region where lymph nodes in the neck region are removed
  • prostate cancer where the lymph nodes in the pelvis or the groin are removed
  • sarcoma where lymph nodes are removed

Without treatment the lymphedema can increase in size. This may cause skin changes (fibrosis), increased swelling and therefore more discomfort in the area (3).

Contraindications

Absolute
  • acute infections, local or general (erysipelas)
  • arterial insufficiency with risk of necrosis
  • thrombosis and embolism
Relative

Untreated cancer disease, heart failure, or kidney failure

Goal

  • reduce lymphedema
  • relieve tormenting side effects
  • improve function 
  • prevent complications such as skin changes and inflammation in the area (erysipelas)

References

1. Rockson SG. Diagnosis and management of lymphatic vascular disease. J Am Coll Cardiol 2008;52:799-806.
2. Lawenda BD, Mondry TE, Johnstone PAS. Lymphedema: (Review) A primer on the identification and management of a chronic condition in oncologic treatment. CA Cancer J Clin 2009;59:8-24.
3. Mortimer PC. The patophysiology of lymphedema. Cancer 1998;83(12 Suppl American): 2798-802.
4. Erickson VS, Pearson ML, Ganz PA, Adams J, Kahn KL. Review: Arm edema in breast cancer patients. J Natl Cancer Inst 2001;93:96-111.
5. Nesvold IL, Dahl AA, Løkkevik E, Mengshoel AM, Fosså SD. Arm and shoulder morbidity in breast cancer patients after breast-conserving therapy versus mastectomy. Acta Oncol 2008;47:835-842.
6. Norman SA, Russel Locario A, Potashnik SL, et al (2009) Lymphedema in breast cancer survivors: incidence, degree, time course, treatment, and symptoms. J Clin Oncol 2009;27:390-397.
7. Johansen J, Overgaard J, Blichert Toft M, Overgaard M. Treatment morbidity associated with the management of the axilla in breast-conserving therapy. Acta Oncol 2000;39:349-54

Definitions

Complete psysical therapy treatment of lymphedema

Consists of manual lymph drainage, compression therapy, skin care and instruction in exercises and self-treatment (1). The treatment is performed by physical therapists with special expertise.
The treatment may be extensive at the start. In cases of severe swelling one usually start with manual lymph drainage followed by bandaging of the arm/leg (1).

Manual Lymph Drainage

This is a kind of massage which requires guided training to perform optimally. The goal is to encourage the drainage of lymph fluid and thereby reduce the swelling of the tissue (2). It is quite different from other kinds of massage applied within physiotherapy. The anatomical conditions of the lymph system is the basis for manual lymph drainage. These are: the course of the large lymph veins, the borders of different lymphatic functional regions (watershed), natural anastomoses crossing these lines, and the lack of valves in the lymphatic vessels .

Bandaging

Bandaging is used mostly at the start of a treatment to reduce swelling. When the swelling is reduced a compression stocking is adjusted.

Compression stocking

Clinical experience and research show that compression is the most important treatment. (3;4) Accordingly it is of great importance to adjust a compression stocking for the arm or leg. If there is swelling of the hand, a compression glove might help.
A compression stocking is used to increase tissue tension. The pressure from the stocking increases absorption of tissue fluid. The stocking provides a graded pressure highest distally and lowest proximally. To adjust the stocking, the circumference of the arm or leg is measured at several defined points. There are several compression classes, but the most commonly used are class 1 and 2. The stocking should provide a constant pressure without causing discomfort. It may take some time to get used to the compression stocking. Some choose to use the stocking occasionally, while others wear it daily.
A facemask at night is recommended to treat lymphedema in the neck and face region (5). Patiens with lymphedema in the groin can be helped by using a bike pant or a panty. Bandaging, tubigrip or bike pants may benefit if there is swelling of the penis and scrotum .

Intermittent pressure massage with pulsation

Treatment is carried out with an electronically powered apparatus which blows air in a double-walled cuff. The cuff, covering the whole arm or leg, has multiple channels and creates a peristaltic pressure wave in proximal direction. The treatment encourages the lymph drainage and thereby reduces the swelling (4).

References

1. The diagnosis and treatment of peripheral lymphedema. Consensus document of the International Society of Lymphology Executive Committee. Lymphology 2003;36:84-91.
2. McNeely ML, Peddle CJ, Yurick JL, Dayes IS, Mackey JR. Conservative and dietary interventions for cancer-related lymphedema: A systematic review and meta-analysis. Cancer 2010.
3. Badger C, Preston N, Seers K, Mortimer P. Physical therapies for reducing and controlling lymphedema of the limbs. Cochrane Database Syst Rev 2004;CD003141.
4. Johansson K, Albertsson M, Ingvar C, Ekdahl C. Effects of compression bandaging with or without manual lymph draining treatment in patients with postoperative arm lymphedema. Lymphology 1999;32:103-110.
5. Deng J, Ridner SH, Murphy BA. Lymphedema in patients with head and neck cancer. 2011;38:1-10.

                                                                          

Preparation

Main points of information

Information should be given to patients who have received surgery only or combined with radiotherapy with increased risk of getting lymphedema. The patient usually gets information about lymphedema after the surgery. Sufficient information and guidance is important and crucial for both avoiding getting lymphedema and being able to identify lymphedema at the very beginning.

  • The function and purpose of the lymphatic system
  • Causes of lymphedema
  • Symptoms of lymphedema
  • Different treatment options
  • Precaution
  • Complications/side effects caused by the disease and treatment
  • The importance of maintaining mobility in the arm or leg

Symptoms of lymphedema

  • A feeling of uncomfortable change
  • A feeling of heaviness
  • Bursting pain
  • Changes of consistency (visible or palpable) in the soft tissues
  • Suspicion of increased circumference
  • Swelling may disappear overnight, but usually returns during daytime
  • Some have swelling sporadically

The dominating symptom is lasting swelling in the involved area. Other symptoms will to a large extent depend on the amount, duration, and localization of the edema.

Moderate swelling after cancer surgery, can be a reaction which often spontaneously disappears.

Diagnostics

Lymphedema is usually measured using a clinical method. There are multiple methods to measure the extent of lymphedema. The gold standard is the water displacement method, which measures and compares the volumes of both arms/legs. But a method of comparing volume by using several circumferential measurements of the arms/legs is often used in research and sometimes in the clinical setting. The most widely used method is measurement of circumference at multiple anatomic points on the arm/leg with comparison with the contralateral arm/leg. A difference in circumference of ≥2cm is often defined as lymphedema. Stemmer sign is also used.

Implementation

With development of lymphedema, it is important to take precautionary measures as soon as possible. Treatment with compression is the component which seems to be most effective in reducing the swelling. Manual lymph drainage is often used in combination with bandaging in the first 1-2 weeks of the treatment. This complete decongestive therapy is a composite treatment including multiple techniques which are performed by a specially trained physical therapist.

The intensive phase

  • Compression treatment – possibly with bandaging and thereafter adjustment of an elastic stocking
  • Manual lymph drainage
  • Circulation and drainage inducing exercises
  • Skin care

During the intensive phase, the patient is usually treated 5 days a week with continuously bandaging until the desired volume reduction is achieved. This usually takes one to two weeks.

Bandaging

After stimulating the lymphatic flow by manual lymph drainage, a compression stocking is used or the whole arm is bandaged for one to two weeks. The bandages should be worn as long as they are not too uncomfortable. Correct bandaging with short, elastic bandages provide the tissue with high pressure under activity and low pressure while resting.

  • An ointment with a low pH (5.5) should be applied to the skin.
  • A light tube gauze should be worn.
  • The padding is then applied.
  • The bandaging starts distally to the lymphedema.
  • The bandages are laid evenly, circularly, and in multiple layers.
  • The pressure should decrease gradually from distal to proximal.
  • The pressure is regulated partially with the bandaging technique and mainly by the number of layers of bandages.

Compression stocking

  • The stocking may be removed at night.
  • At night an ointment is preferably applied to the skin.
  • With incipient  lymph edema, wear the stocking during activity.
  • In moderate and extensive lymph edema, the stocking is usually worn all day.
  • The stocking should be washed at least every third day.

A poorly customized stocking may create faulty compression. The most frequent error is that the compression stocking is used after it has lost its elasticity (worn out) and therefore has less effect.

Manual Lymph Drainage

The massage strokes should be performed in the direction of the lymphatic drainage with light pressure and with slow motions. The treatment should not be painful.

Manual lymph drainage has four main movements: standing circles, pumping grip, turning grip, and corkscrew grip.

Pressure massage with pulsator

Pulsation is never a first choice for treatment of lymphedema, but could be a measure over time when monitoring has shown that the treatment is effective. At the start, the patient should be informed about possibly complications. Sometimes, an increase in edema is seen proximal to the cuff. Further pulsation treatment should then be postponed until manual lymph drainage and exercises have improved the condition. If the pressure is too high, the lymphatic vessels may be damaged and the amount of interstitial fluid may increase.
The pressure should be moderate and the patient should experience the treatment as comfortable. It is not the amount of pressure that is important, but uniform rhythmic pressure wave. Tuning of rate and pressure are adjusted for each patient.
Usually, the treatment should last for twenty minutes at the start increasing gradually to thirty to forty minutes. Can be used daily or when needed. Pulsation treatment may also be performed by the patient at home.

Skin Care

Regardless of whether the patient has lymphedema or not, it is important to hinder the occurrence of scratches, sores, and unnecessary skin irritation. Use of gloves is appropriate in some situations. The patient should also be cautious of overheating and sunburn. The main goal of skin care is to prevent infections, because this can trigger an eruption of lymph edema.

Regular use of bandages and compression stockings dries out the skin. Use of skin care products and cleansers with a low pH (5.5) are recommended. Good skin care keeps the skin soft and supple and maintains the skins natural ability to fight infection.

Disinfecting ointment and adhesive tape should be used in the event of an ulcer or scratch or if there is danger of infection.

Maintenance phase

  • Use of elastic stocking and/or glove as needed
  • Skin care
  • Regular exercises to facilitate the muscle-joint pump
  • Possible intermittent pressure massage with pulsator

The patient obtains some treatment during the maintenance phase and may have treatment by a physical therapist if necessary. In the short term, the treatment is almost always satisfactory. In the long run, the result depends on the patient practicing the measures recommended. The pulsator may usually be borrowed from a health care center.

Exercises to improve mobility and lymph flow of the shoulder/arm

Dynamic exercises with a relaxation phase are optimal. "Throwing" movements may feel uncomfortable. Many experience that it is better to walk with poles, but it is important to maintain a loose grip of the pole.

Correctly adjusted movement exercises:

  • induce circulation without straining the reduced lymphatic system
  • provide adequate joint movements
  • stimulate dynamic change between tension and relaxation, preferably in conjunction with respiration

Movement therapy in a heated pool may be favorable for some lymphedema patients. Water pressure stimulates lymphatic drainage and simultaneously activates circulation and movement.

 

Follow-Up

If necessary, the patient may obtain a referral for physical therapy in their home area for further follow-up. Follow-up and guidance by a physical therapist with the necessary skills is important. Some with serious lymphedema will need frequent treatment for the rest of their life. But others will be able to manage the treatment themselves by adhering to the guidelines that they have learned. Compression with stockings and skincare are often sufficient treatment. So many patients do not need physical therapy as treatment, but rather information and functional guidance.

Moderate physical activity improves joint movement, circulation, and well-being, as well as stimulation of lymph drainage. Blood pressure should not be measured and vaccinations should not be given in the treated arm. Gloves are recommended for gardening.

Complications

Fibrosis of the dermis and epidermis with affects some persons with lymphedema. The skin loses its elasticity and is more easily traumatized than normal skin.

The immune system is weakened in the edematous area. This may be for multiple reasons, among others, weakened transport of dendritic cells, lymphocytes, and proteins. If the area’s regional lymph nodes are removed, this will also weaken the local immune system.

In some edema patients, especially secondary lymphedema, a distinctive reaction (erysipelas) may occur in the skin of the affected area. This will usually start acutely with a strong feeling of malaise with high fever, hyperemia with flushing, and increased swelling of the skin. The area of skin involvement is often limited. The symptoms are usually improved after four to six days but it is not uncommon for the edema to deteriorate. The condition should be treated with antibiotics (penicilin) as quickly as possible.

Lymph edema in the armLymph edema in the arm.Lymph edema in the legLymph edema in the leg
Lymph edema in the arm.Lymph edema in the arm.

Fatigue before, during, and after Cancer Treatment

General

There are many reasons why cancer patients feel fatigued. In many patients, the causes are synergistic. Cancer patients are often very sick during treatment periods and may experience extreme fatigue during intensive chemotherapy. It is also very important to be aware that fatigue is a symptom of many other medical conditions, both physical and psychological, which also affects cancer patients. Some known causes of fatigue associated with cancer and cancer treatment are: 

  • Cancer itself
  • An operation
  • Current or recently concluded chemotherapy
  • Current or recently finished radiation therapy
  • Severe anemia
  • Other symptoms such as pain and nausea 
  • Fever or infection
  • Too little fluid or food intake
  • Reduced lung function
  • Changes in sleep
  • Worries, anxiety, stress, or depression

For some of these conditions, such as infections, there is medical treatment available. Fatigue that occurs after an operation or during chemotherapy and radiation therapy will, for most, gradually disappear when strength is regained. If a patient was feeling healthy after treatment and all of the sudden experiences fatigue, they should contact their doctor. If a patient feels fatigue and at the same time feels stressed, worried, or down, they may be reluctant to speak to their doctor or health personnel about it. It is still recommended to talk about these problems. Talking about it may be therapeutic, and provides room for discussing measures with a qualified person with experience with patients that have the same problems. For cured patients experiencing chronic fatigue, it may be difficult to pinpoint a specific cause. Many of these patients experience improvement by changing their lifestyle to a lower tempo than before the diagnosis.

Definition

Everyone knows what it feels like to be tired, fatigued, or lethargic when sick. This feeling is the most common side effect of cancer and cancer treatment. A symptom is a condition or state that something is not right in the body. Other frequent symptoms associated with cancer and cancer treatment are reduced appetite and nausea. Most patients who experience fatigue associated with cancer say that the feeling does not improve with rest, and many describe a lack of energy or exhaustion.  

If fatigue arises during chemotherapy or radiation therapy, most patients experience that it will gradually go away when treatment is over and their strength is regained. This type of fatigue is considered acute. Improvement may take time depending on the intensity of treatment. Some patients experience that fatigue lasts for months, or even years. This is considered chronic fatigue. The ability to carry out daily activities, a lack of humor, health-related worries, a reduced capacity to carry out work functions, or less energy for family, can also accompany chronic fatigue. Most patients will find it difficult to be told by their doctor that they are considered healthy, while their friends and family expect them to be normal again, despite having a lack of energy and ability to perform activities they want to.  

For many, feeling fatigued is often accompanied by having difficulty concentrating, poor memory, and an increased need for sleep. Most patients will need more sleep than before they became sick. For many, sleep is not restful, and it may take time to "get going" in the morning. Many also experience that they quickly become drained of strength if they exert themselves, and that it takes a long time before regaining strength after exertion. Exertion in this context can mean both physically and mentally such as working on a task that requires concentration.

Preparation

Fatigue can occur in all phases of cancer illness. Some patients feel it before the diagnosis, and almost all patients experience fatigue during radiation therapy or chemotherapy. A minority of patients experience long term fatigue after cancer treatment is over and the disease is cured. Patients who cannot be cured will almost always feel tired, worn-out, and exhausted. The degree of fatigue in these patients varies depending on the cancer type, spreading, and other symptoms of the disease.

The patient should be given necessary information on both causes of fatigue and measures he/she can take.

Implementation

General measures that can reduce feeling tired and fatigued

Following suggestions are meant as general advice that may not necessarily apply to everyone in all situations. This advice is based on results from studies, experiences from cancer patients, and recommendations from experts. Each patient should assess what works for them. It is recommended to express concerns and seek advice for what measures you can take and what you should avoid.

General advice
  • Try to live as "normal" as possible.
  • Try to plan your day to include time to rest.
  • Take many small breaks during the day instead of a few long ones.
  • Rest after strenuous activity.
  • Plan your daily activities and do those that are most important for you.
  • Set realistic goals for yourself and try to be happy with those you accomplish.
  • Try to recognize activities that make you especially tired/fatigued and limit them, or spread them out over longer intervals. 
  • Try to accept that you do not have the energy to do the things you could previously.
  • Assess what is important for you to do yourself and what you can allow others to do.
  • Assume you will be tired after something strenuous even if you experience the activity as positive.

Physical activity and exercise

Exercise and physical activity that is appropriate for you will reduce the feeling of fatigue. Regular exercise is the most effective measure against chronic fatigue in cancer patients. Nevertheless, both too much and too little exercise can worsen fatigue, therefore, it is important to find a level (frequency and intensity) that suits you. You should never exercise so intensely that you must stop a session or exercise period because you are exhausted. Remember that daily form varies for everyone and adjust your exercise routine accordingly. Make long-term goals (months) and gradually increase activity, and carefully for a period. 

  • Activities such as walking, biking, swimming, dance, and aerobics are recommended.
  • Light exercise periods at regular intervals are better than intense, sporadic periods.
  • Always start with a slow tempo and increase gradually before finishing with a slow tempo again.
  • Always sit down and rest after exercise but try not to lay down and sleep.
  • Physical therapists and sport pedagogs can provide advice on exercises that are right for you. The principles are the same for all exercise, but it should be adjusted for your energy level.  

Sleep

Many cancer patients with chronic fatigue have sleep pattern disturbances. It is important to maintain a normal rhythm even if you feel like sleeping during the day.

  • Try to wake up at the same time every day and keep a regular bedtime.
  • Avoid too much activity right before bedtime.
  • Try not to sleep during the day because this will disturb your biological rhythm.
  • But, a short afternoon nap may be energizing!
  • Rest during the day by relaxing in a good chair, but try not to fall asleep.
  • Speak to your doctor about lasting sleep disturbances.

Nutrition

Having a reduced appetite or intake of food can also result in a lack of strength and energy. We recommend eating healthy food regularly, and to follow the national guidelines on nutrition. Special diets or supplements do not improve fatigue unless there is a deficiency.

Work situation

Some patients do not have the strength to continue working, or they must reduce their hours because of chronic fatigue. Consulting with a social worker may be beneficial for guidance regarding your work situation, your welfare rights, and financial situation. 

Some adjustments that you and your employer can make:

  • Discuss the possibility for more simple or easier tasks, especially if you have a physically demanding profession.
  • Assess the possibility of reducing your hours.
  • Remember to take regular breaks also at work, if possible.
  • Assess the possibility of flexi-time to work during the hours you have energy, as well as the possibility of working from home.

Care for children

Caring for children or adolescents may be very difficult when you are fatigued or lack energy and strength. There are, however, some measures you can take:

  • Explain to your children that you are tired and are not able to do as much as you used to.
  • Discuss what the children can help you with and allow them to take part in household chores.
  • Try to establish permanent household chores for all family members.
  • Try to do activities that suit you that do not require too much energy, and can be performed without too much exertion. 
  • Ask and accept help from others for driving to and from activities, school, etc. if this relieves you.

Drug therapy

In Norway, there is currently no specific drug therapy for chronic fatigue associated with cancer. If the fatigue is due to specific conditions, this is of course treated with medication, if possible. Sometimes, such treatments improve the fatigue, but other times they do not. Examples of treatment that often reduce fatigue are treatment for infections and depression. 

Treatment with medications that stimulate production of red blood cells is not recommended for cancer patients due the the danger of serious side effects.

Follow-up

Information about fatigue

Healthcare workers in cancer care will often have knowledge about fatigue and cancer. Most general care physicians have general experience with fatigue but meet relatively few cancer patients. There is a lot of information available on the internet of varying quality. Below is a list of web adresses and some literature. Be aware that you may find opposing advice because knowledge on treatment especially, is limited.

Some articles/books:

  • Armes J., m.fl. (2004). Fatigue in cancer. Oxford University Press.
  • Berger A.M., m.fl. (2009). NCCN Clinical Practice Guidelines in Oncology. Cancer-Related Fatigue. www.nccn.org
  • Patarca-Montero R. (2004). Handbook of cancer-related fatigue. Haworth Medical Press